forked from SkienaBooks/Algorithm-Design-Manual-Programs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriangulate.c
158 lines (119 loc) · 3.6 KB
/
triangulate.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/* triangulate.c
Triangulate a polygon via ear-clipping, and compute the area
of a polygon.
by: Steven Skiena
begun: May 7, 2002
*/
/*
Copyright 2003 by Steven S. Skiena; all rights reserved.
Permission is granted for use in non-commerical applications
provided this copyright notice remains intact and unchanged.
This program appears in my book:
"Programming Challenges: The Programming Contest Training Manual"
by Steven Skiena and Miguel Revilla, Springer-Verlag, New York 2003.
See our website www.programming-challenges.com for additional information.
This book can be ordered from Amazon.com at
http://www.amazon.com/exec/obidos/ASIN/0387001638/thealgorithmrepo/
*/
#include <math.h>
#include <stdio.h>
#include "bool.h"
#include "geometry.h"
void add_triangle(triangulation *t, int i, int j, int k, polygon *p) {
int n; /* number of triangles in t */
n = t->n;
t->t[n][0] = i;
t->t[n][1] = j;
t->t[n][2] = k;
t->n = n + 1;
}
bool point_in_triangle(point p, triangle t) {
int i; /* counter */
bool cw();
for (i = 0; i < 3; i++) {
if (cw(t[i], t[(i + 1 ) % 3], p)) {
return(FALSE);
}
}
return(TRUE);
}
bool ear_Q(int i, int j, int k, polygon *p) {
triangle t; /* coordinates for points i,j,k */
int m; /* counter */
bool cw();
copy_point(p->p[i], t[0]);
copy_point(p->p[j], t[1]);
copy_point(p->p[k], t[2]);
if (cw(t[0], t[1], t[2])) {
return(FALSE);
}
for (m = 0; m < p->n; m++) {
if ((m != i) && (m != j) && (m != k)) {
if (point_in_triangle(p->p[m], t)) {
return(FALSE);
}
}
}
return(TRUE);
}
void triangulate(polygon *p, triangulation *t) {
int l[MAXPOLY], r[MAXPOLY]; /* left/right neighbor indices */
int i; /* counter */
for (i = 0; i < p->n; i++) { /* initialization */
l[i] = ((i - 1) + p->n) % p->n;
r[i] = ((i + 1) + p->n) % p->n;
}
t->n = 0;
i = p->n-1;
while (t->n < (p->n - 2)) {
i = r[i];
if (ear_Q(l[i], i,r[i], p)) {
add_triangle(t, l[i], i, r[i], p);
l[r[i]] = l[i];
r[l[i]] = r[i];
}
}
}
double area_triangulation(polygon *p) {
triangulation t; /* output triangulation */
double total = 0.0; /* total area so far */
int i; /* counter */
double triangle_area();
triangulate(p, &t);
for (i = 0; i < t.n; i++) {
total += triangle_area(p->p[t.t[i][0]],
p->p[t.t[i][1]], p->p[t.t[i][2]]);
}
return(total);
}
double area(polygon *p) {
double total = 0.0; /* total area so far */
int i, j; /* counters */
for (i = 0; i < p->n; i++) {
j = (i + 1) % p->n;
total += (p->p[i][X] * p->p[j][Y]) - (p->p[j][X] * p->p[i][Y]);
}
return(total / 2.0);
}
int main(void) {
polygon p; /* input polygon */
triangulation t; /* output triangulation */
int i; /* counter */
double area(), area_triangulate();
scanf("%d", &p.n);
for (i = 0; i < p.n; i++) {
scanf("%lf %lf", &p.p[i][X], &p.p[i][Y]);
}
printf(" area via triangulation = %f\n", area_triangulation(&p));
printf(" area slick = %f\n", area(&p));
return 0;
}
void print_triangulation(triangulation *t) {
int i, j; /* counters */
for (i = 0; i < t->n; i++) {
for (j = 0; j < 3; j++) {
printf(" %d ", t->t[i][j]);
}
printf("\n");
}
}