forked from SkienaBooks/Algorithm-Design-Manual-Programs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplates.c
178 lines (128 loc) · 4.86 KB
/
plates.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/* plates.c
Compute the number of circles in two different disk packings.
Assuming we have an $w \times l$ box, how many unit disks
can we pack in there assumming we have w disks on the bottom?
by: Steven Skiena
begun: April 4, 2002
*/
/*
Copyright 2003 by Steven S. Skiena; all rights reserved.
Permission is granted for use in non-commerical applications
provided this copyright notice remains intact and unchanged.
This program appears in my book:
"Programming Challenges: The Programming Contest Training Manual"
by Steven Skiena and Miguel Revilla, Springer-Verlag, New York 2003.
See our website www.programming-challenges.com for additional information.
This book can be ordered from Amazon.com at
http://www.amazon.com/exec/obidos/ASIN/0387001638/thealgorithmrepo/
*/
#include <stdio.h>
#include <math.h>
/*
how many triangular-lattice layers of radius r balls fit in height h?
*/
int dense_layers(double w, double h, double r) {
double gap; /* distance between layers */
if ((2*r) > h) {
return(0);
}
gap = 2.0 * r * (sqrt(3)/2.0);
return(1 + floor((h - 2.0 * r) / gap));
}
int plates_per_row(int row, double w, double r) {
int plates_per_full_row; /* number of plates in full/even row */
plates_per_full_row = floor(w / (2 * r));
if ((row % 2) == 0) {
return(plates_per_full_row);
}
if (((w/(2*r))-plates_per_full_row) >= 0.5) { /* odd row full, too */
return(plates_per_full_row);
} else {
return(plates_per_full_row - 1);
}
}
/*
How many radius r plates fit in a hexagonal-lattice packed w*h box?
*/
int dense_plates(double w, double l, double r) {
int layers; /* number of layers of balls */
layers = dense_layers(w, l, r);
return (ceil(layers/2.0) * plates_per_row(0,w,r) +
floor(layers/2.0) * plates_per_row(1,w,r) );
}
int grid_plates(double w, double h, double r) {
int layers; /* number of layers of balls */
layers = floor(h / (2 * r));
return (layers * plates_per_row(0, w, r));
}
/* Hexagonal coordinates start with the center of disk (0,0) at
geometric point (0,0). The hexagonal coordinate $(xh,yh)$
refers to the center of the disk on the horizontal row xh
and positive-slope diagonal yh. The geometric coordinate of
such a point is a function of the radius of the disk $r$.
*/
void hex_to_geo(int xh, int yh, double r, double *xg, double *yg) {
*yg = (2.0 * r) * xh * (sqrt(3)/2.0);
*xg = (2.0 * r) * xh * (1.0/2.0) + (2.0 * r) * yh;
}
void geo_to_hex(double xg, double yg, double r, double *xh, double *yh) {
*xh = (2.0/sqrt(3)) * yg / (2.0 * r);
*yh = (xg - (2.0 * r) * (*xh) * (1.0/2.0) ) / (2.0 * r);
}
/* Under the hexagonal coordinate system, the set of hexagons defined
by coordinates (hx,hy), where $0 <= hx <= xmax$ and $0 <= hx <= ymax$
forms a diamond-shaped patch, not a conventional axis-oriented
rectangle. To solve this problem, we define array coordinates
so that (ax,ay) refers to the position in an axis-oriented
rectangle with (0,0) as the lower righthand point in the matrix.
*/
void array_to_hex(int xa, int ya, int *xh, int *yh) {
*xh = xa;
*yh = ya - xa + ceil(xa/2.0);
}
void hex_to_array(int xh, int yh, int *xa, int *ya) {
*xa = xh;
*ya = yh + xh - ceil(xh/2.0);
}
int plates_on_top(int xh, int yh, double w, double l, double r) {
int number_on_top = 0; /* total plates on top */
int layers; /* number of rows in grid */
int rowlength; /* number of plates in row */
int row; /* counter */
int xla, yla, xra, yra; /* array coordinates */
layers = dense_layers(w, l, r);
for (row = xh + 1; row < layers; row++) {
rowlength = plates_per_row(row, w, r) - 1;
hex_to_array(row, yh - (row - xh), &xla, &yla);
if (yla < 0) {
yla = 0; /* left boundary */
}
hex_to_array(row,yh,&xra,&yra);
if (yra > rowlength) {
yra = rowlength; /* right boundary */
}
number_on_top += yra - yla + 1;
}
return(number_on_top);
}
int main(void) {
double w; /* box width */
double l; /* box length */
double r; /* plate radius */
int i, j; /* counters */
int xh, yh, xa, ya;
double xhf, yhf, xg, yg;
int xmax, ymax;
printf("input box width, box length, and plate radius:\n");
scanf("%lf %lf %lf", &w, &l, &r);
printf("box width=%lf, box length=%lf, and plate radius=%lf:\n", w, l, r);
printf("dense packing = %d\n", dense_plates(w, l, r));
printf("grid packing = %d\n", grid_plates(w, l, r));
/* print all the possible hexes in the box */
xmax = floor(w / (2*r));
ymax = dense_layers(w,l,r);
for (i = 0; i < xmax; i++) {
printf("(0,%d) has %d on top.\n", i, plates_on_top(0, i, w, l, r));
}
return 0;
}