forked from SkienaBooks/Algorithm-Design-Manual-Programs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelevator.c
145 lines (106 loc) · 3.4 KB
/
elevator.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* elevator.c
Elevator stop optimization via dynamic programming.
by: Steven Skiena
begun: April 1, 2002
*/
/*
Copyright 2003 by Steven S. Skiena; all rights reserved.
Permission is granted for use in non-commerical applications
provided this copyright notice remains intact and unchanged.
This program appears in my book:
"Programming Challenges: The Programming Contest Training Manual"
by Steven Skiena and Miguel Revilla, Springer-Verlag, New York 2003.
See our website www.programming-challenges.com for additional information.
This book can be ordered from Amazon.com at
http://www.amazon.com/exec/obidos/ASIN/0387001638/thealgorithmrepo/
*/
#include <stdio.h>
#define NFLOORS 25 /* the height of the building in floors */
#define MAX_RIDERS 50 /* what is the capacity of the elevator? */
#define MAXINT 100007
int stops[MAX_RIDERS]; /* what floor does everyone get off at? */
int nriders; /* number of riders */
int nstops; /* number of allowable stops */
int m[NFLOORS+1][MAX_RIDERS]; /* dynamic programming cost table */
int p[NFLOORS+1][MAX_RIDERS]; /* dynamic programming parent table */
int min(int a, int b) {
if (a < b) {
return(a);
}
return(b);
}
int floors_walked(int previous, int current) {
int nsteps=0; /* total distance traveled */
int i; /* counter */
for (i = 1; i <= nriders; i++) {
if ((stops[i] > previous) && (stops[i] <= current)) {
nsteps += min(stops[i]-previous, current-stops[i]);
}
}
return(nsteps);
}
/* m[i][j] denotes the cost of serving all the riders using j stops,
the last of which is at floor i. Zero is the originating floor.
*/
int optimize_floors() {
int i, j, k; /* counters */
int cost; /* costs placeholder */
int laststop; /* the elevator's last stop */
for (i = 0; i <= NFLOORS; i++) {
m[i][0] = floors_walked(0, MAXINT);
p[i][0] = -1;
}
for (j = 1; j <= nstops; j++) {
for (i = 0; i <= NFLOORS; i++) {
m[i][j] = MAXINT;
for (k = 0; k <= i; k++) {
cost = m[k][j-1] - floors_walked(k, MAXINT) +
floors_walked(k, i) + floors_walked(i, MAXINT);
if (cost < m[i][j]) {
m[i][j] = cost;
p[i][j] = k;
}
}
}
}
laststop = 0;
for (i = 1; i <= NFLOORS; i++) {
if (m[i][nstops] < m[laststop][nstops]) {
laststop = i;
}
}
return(laststop);
}
void reconstruct_path(int lastfloor, int stops_to_go) {
if (stops_to_go > 1) {
reconstruct_path(p[lastfloor][stops_to_go], stops_to_go-1);
}
printf("%d\n", lastfloor);
}
void print_matrix(int m[NFLOORS+1][MAX_RIDERS]) {
int i, j; /* counters */
for (j = 0; j <= nstops; j++) {
for (i = 0; i <= NFLOORS; i++) {
printf("%3d", m[i][j]);
}
printf("\n");
}
}
int main(void) {
int i, j; /* counters */
int laststop;
scanf("%d %d", &nriders, &nstops);
for (i = 1; i <= nriders; i++) {
scanf("%d", &(stops[i]));
}
for (i = 1; i <= nriders; i++) {
printf("%d\n", stops[i]);
}
laststop = optimize_floors();
print_matrix(m);
printf("\n");
print_matrix(p);
printf("cost = %d\n", m[laststop][nstops]);
reconstruct_path(laststop, nstops);
return 0;
}