-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathRNN_add.py
209 lines (173 loc) · 6.28 KB
/
RNN_add.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import csv
import numpy as np
import itertools
import nltk
from preprocessing import getSentenceData
class Tanh:
def forward(self, x):
return np.tanh(x)
def backward(self, x, diff):
output = np.tanh(x)
return (1.0 - np.square(output)) * diff
class sigmoid:
def forward(self, x):
return 1.0/(1.0+np.exp(-x))
def backward(self, x, diff):
output = self.forward(x)
return (1.0-output)*output*diff
class softmax:
def predict(self, x):
return np.exp(x)/np.sum(np.exp(x))
def loss(self, x, y):
probs = self.predict(x)
return -np.log(probs[0,y])
def diff(self, x, y):
probs = self.predict(x)
probs[0,y] -= 1.0
return probs
class MultiplyGate:
def forward(self, x, w):
return np.dot(x, w)
def backward(self, x, w, dz):
dw = np.dot(x.T, dz)
dx = np.dot(dz, w.T)
return dw, dx
class AddGate:
def forward(self, x1, x2):
return x1 + x2
def backward(self, x1, x2, dz):
dx1 = dz
dx2 = dz
return dx1, dx2
class RNNLayer:
def forward(self, x, prev_s, U, W, V):
self.mulu = mulGate.forward(x, U)
self.mulw = mulGate.forward(prev_s, W)
self.adduw = addGate.forward(self.mulu, self.mulw)
self.state = activation.forward(self.adduw)
self.mulv = mulGate.forward(self.state, V)
def backward(self, x, prev_s, U, W, V, dmulv):
self.forward(x, prev_s, U, W, V)
dV, dVx = mulGate.backward(self.state, V, dmulv)
dadd = activation.backward(self.adduw, dVx)
dmulu, dmulw = addGate.backward(self.mulu, self.mulw, dadd)
dU, dUx = mulGate.backward(x, U, dmulu)
dW, dWx = mulGate.backward(prev_s, W, dmulw)
return dU, dW, dV
class RNN:
def __init__(self, input_dim, hidden_nodes, output_dim, lr = 0.001, bptt_truncate = 4):
self.input_dim = input_dim
self.hidden_nodes = hidden_nodes
self.output_dim = output_dim
self.U = np.random.random([input_dim, hidden_nodes])*0.01
self.W = np.random.random([hidden_nodes, hidden_nodes])*0.01
self.V = np.random.random([hidden_nodes, output_dim])*0.01
self.lr = lr
self.bptt_truncate = bptt_truncate
def forward(self, x):
# the length of input sequence
self.time_steps = x.shape[1]
layers = []
prev_s = np.zeros([1, self.hidden_nodes])
for t in range(self.time_steps):
layer = RNNLayer()
input_vec = x[:,t]
input_vec = np.reshape(input_vec, [1,x.shape[0]])
layer.forward(input_vec, prev_s, self.U, self.W, self.V)
prev_s = layer.state
layers.append(layer)
return layers
def backward(self, x, y):
dU = np.zeros_like(self.U)
dW = np.zeros_like(self.W)
dV = np.zeros_like(self.V)
layers = self.forward(x)
for t in range(self.time_steps):
dmulv = output.diff(layers[t].mulv, y[t])
input_vec = x[:,t]
input_vec = np.reshape(input_vec, [1, x.shape[0]])
prev_s = np.zeros([1,self.hidden_nodes])
dU_t, dW_t, dV_t = layers[t].backward(input_vec, prev_s, self.U, self.W, self.V, dmulv)
for i in range(t-1,max(-1, t-self.bptt_truncate-1),-1):
input_vec = x[:, i]
input_vec = np.reshape(input_vec, [1, x.shape[0]])
prev_s_i = np.zeros([1,self.hidden_nodes]) if i == 0 else layers[i-1].state
dU_i, dW_i, dV_i = layers[i].backward(input_vec, prev_s_i, self.U, self.W, self.V, dmulv)
dU_t += dU_i
dW_t += dW_i
dV_t += dV_i
dU += dU_t
dW += dW_t
dV += dV_t
return dU, dW, dV
def sgd_optimizer(self, x, y, lr):
dU, dW, dV = self.backward(x,y)
self.U -= lr*dU
self.W -= lr*dW
self.V -= lr*dV
def caculate_loss(self, x, y):
loss = 0.0
for example in range(len(y)):
single_loss = 0.0
layers = self.forward(x[example])
for j,layer in enumerate(layers):
single_loss += output.loss(layer.mulv, y[example][j])
loss += (single_loss/len(layers))
return loss/len(y)
def train(self, x, y, lr=0.005, nepoch=100, evaluate_loss_after=5):
for epoch in range(nepoch):
if epoch % evaluate_loss_after == 0:
loss = self.caculate_loss(x,y)
print("Epoch=%d Loss=%f" % (epoch, loss))
for i in range(len(y)):
self.sgd_optimizer(x[i], y[i], lr) # x[i], y[i] is a list
def predict(self, x):
output = softmax()
layers = self.forward(x)
predict_y = [np.argmax(output.predict(layer.mulv)) for layer in layers]
return predict_y
mulGate = MultiplyGate()
addGate = AddGate()
activation = Tanh()
output = softmax()
input_dim = 2
hidden_dim = 16
output_dim = 2
model = RNN(input_dim, hidden_dim, output_dim)
def generate_data(binary_dim, largest_number, int2binary):
a = np.random.randint(largest_number/2)
b = np.random.randint(largest_number/2)
c = a + b
return a,b,c,int2binary[a], int2binary[b], int2binary[c]
int2binary = {}
binary_dim = 8
largest_number = pow(2, binary_dim)
binary = np.unpackbits(np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
int2binary[i] = binary[i]
X_train = []
y_train = []
for i in range(1000):
_, _, _, a, b, c = generate_data(binary_dim, largest_number, int2binary)
x = np.stack((a, b))
y = np.array(c)
X_train.append(x[:,::-1]) # because we caculate from right to left
y_train.append(y[::-1])
losses = model.train(X_train, y_train, lr=0.005, nepoch=10, evaluate_loss_after=1)
# test
# the input and predict result should be reversed
inta, intb, intc, a, b, c = generate_data(binary_dim, largest_number, int2binary)
x = np.stack((a, b))
y = np.array(c)
print("input:")
print(str(inta)+' + '+ str(intb) + ' = ', str(intc))
print(a, b, c)
print("predict: ")
predict_y = model.predict(x[:,::-1])
print(predict_y[::-1])
inty = 0
index = 0
for i in predict_y:
inty += pow(2,index)*i
index += 1
print(inty)