Given two arrays A
and B
of equal size, the advantage of A
with respect to B
is the number of indices i
for which A[i] > B[i]
.
Return any permutation of A
that maximizes its advantage with respect to B
.
Example 1:
Input: A = [2,7,11,15], B = [1,10,4,11] Output: [2,11,7,15]
Example 2:
Input: A = [12,24,8,32], B = [13,25,32,11] Output: [24,32,8,12]
Note:
1 <= A.length = B.length <= 10000
0 <= A[i] <= 10^9
0 <= B[i] <= 10^9
// OJ: https://leetcode.com/problems/advantage-shuffle/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(N)
class Solution {
public:
vector<int> advantageCount(vector<int>& A, vector<int>& B) {
int N = A.size(), i = 0;
vector<int> ia(N), ib(N), ans(N, -1);
iota(begin(ia), end(ia), 0);
iota(begin(ib), end(ib), 0);
sort(begin(ia), end(ia), [&](int a, int b) { return A[a] > A[b]; });
sort(begin(ib), end(ib), [&](int a, int b) { return B[a] > B[b]; });
for (int j = 0; i < N && j < N; ++i) {
while (j < N && B[ib[j]] >= A[ia[i]]) ++j;
if (j < N) {
ans[ib[j++]] = A[ia[i]];
} else break;
}
for (int j = 0; i < N && j < N; ++i) {
while (j < N && ans[j] != -1) ++j;
if (j < N) {
ans[j++] = A[ia[i]];
}
}
return ans;
}
};