There is an undirected graph with n
nodes, where each node is numbered between 0
and n - 1
. You are given a 2D array graph
, where graph[u]
is an array of nodes that node u
is adjacent to. More formally, for each v
in graph[u]
, there is an undirected edge between node u
and node v
. The graph has the following properties:
- There are no self-edges (
graph[u]
does not containu
). - There are no parallel edges (
graph[u]
does not contain duplicate values). - If
v
is ingraph[u]
, thenu
is ingraph[v]
(the graph is undirected). - The graph may not be connected, meaning there may be two nodes
u
andv
such that there is no path between them.
A graph is bipartite if the nodes can be partitioned into two independent sets A
and B
such that every edge in the graph connects a node in set A
and a node in set B
.
Return true
if and only if it is bipartite.
Example 1:
Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]] Output: false Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.
Example 2:
Input: graph = [[1,3],[0,2],[1,3],[0,2]] Output: true Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.
Constraints:
graph.length == n
1 <= n <= 100
0 <= graph[u].length < n
0 <= graph[u][i] <= n - 1
graph[u]
does not containu
.- All the values of
graph[u]
are unique. - If
graph[u]
containsv
, thengraph[v]
containsu
.
Companies:
Amazon, LinkedIn, Google, ByteDance
Related Topics:
Depth-First Search, Breadth-First Search, Union Find, Graph
// OJ: https://leetcode.com/problems/is-graph-bipartite/
// Author: github.com/lzl124631x
// Time: O(V + E)
// Space: O(V + E)
class Solution {
public:
bool isBipartite(vector<vector<int>>& G) {
int N = G.size();
vector<int> id(N); // 0 unseen, 1 and -1 are different colors
function<bool(int, int)> dfs = [&](int u, int color) {
if (id[u]) return id[u] == color;
id[u] = color;
for (int v : G[u]) {
if (!dfs(v, -color)) return false;
}
return true;
};
for (int i = 0; i < N; ++i) {
if (!id[i] && !dfs(i, 1)) return false;
}
return true;
}
};
// OJ: https://leetcode.com/problems/is-graph-bipartite/
// Author: github.com/lzl124631x
// Time: O(V + E)
// Space: O(V + E)
class Solution {
public:
bool isBipartite(vector<vector<int>>& G) {
int N = G.size();
vector<int> id(N); // 0 unseen, 1 and -1 are different colors
queue<int> q;
for (int i = 0; i < N; ++i) {
if (id[i]) continue;
q.push(i);
id[i] = 1;
while (q.size()) {
int u = q.front();
q.pop();
for (int v : G[u]) {
if (id[v]) {
if (id[v] != -id[u]) return false;
continue;
}
id[v] = -id[u];
q.push(v);
}
}
}
return true;
}
};