Skip to content

Latest commit

 

History

History
 
 

2799

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

You are given an array nums consisting of positive integers.

We call a subarray of an array complete if the following condition is satisfied:

  • The number of distinct elements in the subarray is equal to the number of distinct elements in the whole array.

Return the number of complete subarrays.

A subarray is a contiguous non-empty part of an array.

 

Example 1:

Input: nums = [1,3,1,2,2]
Output: 4
Explanation: The complete subarrays are the following: [1,3,1,2], [1,3,1,2,2], [3,1,2] and [3,1,2,2].

Example 2:

Input: nums = [5,5,5,5]
Output: 10
Explanation: The array consists only of the integer 5, so any subarray is complete. The number of subarrays that we can choose is 10.

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 2000

Companies: TikTok

Related Topics:
Array, Hash Table, Sliding Window

Similar Questions:

Solution 1. Two Pointers

// OJ: https://leetcode.com/problems/count-complete-subarrays-in-an-array
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
    int countCompleteSubarrays(vector<int>& A) {
        unordered_set<int> s(begin(A), end(A));
        int i = 0, j = 0, N = A.size(), ans = 0;
        unordered_map<int, int> m;
        for (; i < N; ++i) {
            while (j < N && m.size() < s.size()) m[A[j++]]++;
            if (m.size() < s.size()) break;
            ans += N - j + 1;
            if (--m[A[i]] == 0) m.erase(A[i]);
        }
        return ans;
    }
};

Solution 2. Find Minimum Sliding Window

// OJ: https://leetcode.com/problems/count-complete-subarrays-in-an-array
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
    int countCompleteSubarrays(vector<int>& A) {
        unordered_set<int> s(begin(A), end(A));
        int i = 0, j = 0, N = A.size(), ans = 0, last = -1;
        unordered_map<int, int> m;
        for (; j < N; ++j) {
            m[A[j]]++;
            while (m.size() == s.size()) {
                if (--m[A[i]] == 0) m.erase(A[i]);
                last = i;
                ++i;
            }
            if (last != -1) ans += last + 1;
        }
        return ans;
    }
};