Skip to content

Latest commit

 

History

History
 
 

2425

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

You are given two 0-indexed arrays, nums1 and nums2, consisting of non-negative integers. There exists another array, nums3, which contains the bitwise XOR of all pairings of integers between nums1 and nums2 (every integer in nums1 is paired with every integer in nums2 exactly once).

Return the bitwise XOR of all integers in nums3.

 

Example 1:

Input: nums1 = [2,1,3], nums2 = [10,2,5,0]
Output: 13
Explanation:
A possible nums3 array is [8,0,7,2,11,3,4,1,9,1,6,3].
The bitwise XOR of all these numbers is 13, so we return 13.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]
Output: 0
Explanation:
All possible pairs of bitwise XORs are nums1[0] ^ nums2[0], nums1[0] ^ nums2[1], nums1[1] ^ nums2[0],
and nums1[1] ^ nums2[1].
Thus, one possible nums3 array is [2,5,1,6].
2 ^ 5 ^ 1 ^ 6 = 0, so we return 0.

 

Constraints:

  • 1 <= nums1.length, nums2.length <= 105
  • 0 <= nums1[i], nums2[j] <= 109

Companies: Trilogy

Related Topics:
Array, Bit Manipulation, Brainteaser

Solution 1.

$$(a_0 \oplus b_0) \oplus (a_0 \oplus b_1) \cdots (a_0 \oplus b_{n-1})\newline \oplus (a_1 \oplus b_0) \oplus (a_1 \oplus b_1) \cdots (a_1 \oplus b_{n-1})\newline \cdots\newline \oplus (a_{m-1} \oplus b_0) \oplus (a_{m-1} \oplus b_1) \cdots (a_{m-1} \oplus b_{n-1})$$ We regroup them as the following $$ (a_0\oplus a_1 \cdots \oplus a_{m_1})^\oplus_{N} \oplus (b_0\oplus b_1 \cdots \oplus b_{n-1})^\oplus_{M}$$ where $x^\oplus_k$ means XORing x itself k times.

$(a_0\oplus a_1 \cdots \oplus a_{m_1})^\oplus_{N}$ equals $a_0\oplus a_1 \cdots \oplus a_{m_1}$ if $N$ is odd, or $0$ if $N$ is even.

// OJ: https://leetcode.com/problems/bitwise-xor-of-all-pairings
// Author: github.com/lzl124631x
// Time: O(M + N)
// Space: O(1)
class Solution {
public:
    int xorAllNums(vector<int>& A, vector<int>& B) {
        int ans = 0;
        if (B.size() % 2) {
            for (int n : A) ans ^= n;
        }
        if (A.size() % 2) {
            for (int n : B) ans ^= n;
        }
        return ans;
    }
};