Skip to content

Latest commit

 

History

History
 
 

221

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Given an m x n binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.

 

Example 1:

Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
Output: 4

Example 2:

Input: matrix = [["0","1"],["1","0"]]
Output: 1

Example 3:

Input: matrix = [["0"]]
Output: 0

 

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j] is '0' or '1'.

Companies:
Amazon, Visa, Microsoft, IBM, Google, Twitter, Apple, Booking.com, Indeed

Related Topics:
Array, Dynamic Programming, Matrix

Similar Questions:

Solution 1. Brute Force

// OJ: https://leetcode.com/problems/maximal-square/
// Author: github.com/lzl124631x
// Time: O((MN)^2)
// Space: O(1)
class Solution {
public:
    int maximalSquare(vector<vector<char>>& A) {
        if (A.empty() || A[0].empty()) return 0;
        int M = A.size(), N = A[0].size(), ans = 0;
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                int k = 0;
                bool stop = false;
                for (; i + k < M && j + k < N; ++k) {
                    for (int t = 0; t < k + 1 && !stop; ++t) {
                        if (A[i + t][j + k] == '0') stop = true;
                    }
                    for (int t = 0; t < k + 1 && !stop; ++t) {
                        if (A[i + k][j + t] == '0') stop = true;
                    }
                    if (stop) break;
                }
                ans = max(ans, k);
            }
        }
        return ans * ans;
    }
};

Solution 2. Use the 1D subproblem

This problem is trivial on 1D array.

Let row[i][j] be the length of consecutive 1s ending at A[i][j] in ith row.

Let col[i][j] be the length of consecutive 1s ending at A[i][j] in jth column.

With these two arrays, for each matrix[i][j], the side length of the square whose bottom right corner is at matrix[i][j] is at most min(row[i][j], col[i][j]). Then we keep probing the col[i][k] where k < j to keep tighten the limit.

// OJ: https://leetcode.com/problems/maximal-square/
// Author: github.com/lzl124631x
// Time: O(M * N^2)
// Space: O(MN)
class Solution {
public:
    int maximalSquare(vector<vector<char>>& A) {
        if (A.empty() || A[0].empty()) return 0;
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<vector<int>> row(M, vector<int>(N, 0)), col(M, vector<int>(N, 0));
        for (int i = 0; i < M; ++i) {
            int start = -1;
            for (int j = 0; j < N; ++j) {
                if (A[i][j] == '0') start = j;
                row[i][j] = j - start;
            }
        }
        for (int j = 0; j < N; ++j) {
            int start = -1;
            for (int i = 0; i < M; ++i) {
                if (A[i][j] == '0') start = i;
                col[i][j] = i - start;
            }
        }
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                int end = min(row[i][j], col[i][j]), k = 0;
                while (k < end) {
                    ++k;
                    if (j - k < 0) break;
                    end = min(end, col[i][j - k]);
                }
                ans = max(ans, k);
            }
        }
        return ans * ans;
    }
};

Solution 3. Bottom-up DP

Let dp[i + 1][j + 1] be the side length of the maximal square whose bottom right corner is at matrix[i][j]. Then we have:

dp[i + 1][j + 1] = min(dp[i][j], dp[i][j + 1], dp[i + 1][j]) + 1
// OJ: https://leetcode.com/problems/maximal-square/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
    int maximalSquare(vector<vector<char>>& A) {
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<vector<int>> dp(M + 1, vector<int>(N + 1));
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                if (A[i][j] == '0') continue;
                dp[i + 1][j + 1] = 1 + min({ dp[i][j], dp[i + 1][j], dp[i][j + 1] });
                ans = max(ans, dp[i + 1][j + 1]);
            }
        }
        return ans * ans;
    }
};

Solution 4. Bottom-up DP with Space Optimization

   dp[i][j]    dp[i][j + 1]

            \   |

dp[i+1][j] --  dp[i + 1][j + 1]

Given the dependency above, we can use a 2 * N array to store the DP values.

// OJ: https://leetcode.com/problems/maximal-square/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int maximalSquare(vector<vector<char>>& A) {
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<vector<int>> dp(2, vector<int>(N + 1));
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                dp[(i + 1) % 2][j + 1] = A[i][j] == '0' ? 0 : min({ dp[i % 2][j], dp[i % 2][j + 1], dp[(i + 1) % 2][j] }) + 1;
                ans = max(ans, dp[(i + 1) % 2][j + 1]);
            }
        }
        return ans * ans;
    }
};

Or via swapping arrays.

// OJ: https://leetcode.com/problems/maximal-square/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int maximalSquare(vector<vector<char>>& A) {
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<int> dp(N + 1), next;
        for (int i = 0; i < M; ++i) {
            next.assign(N + 1, 0);
            for (int j = 0; j < N; ++j) {
                if (A[i][j] == '0') continue;
                next[j + 1] = 1 + min({ dp[j], dp[j + 1], next[j] });
                ans = max(ans, next[j + 1]);
            }
            swap(next, dp);
        }
        return ans * ans;
    }
};

Or: Use a prev variable to store the dp[i][j], then we can further reduce the dp array to 1D array.

// OJ: https://leetcode.com/problems/maximal-square/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int maximalSquare(vector<vector<char>>& A) {
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<int> dp(N + 1, 0);
        for (int i = 0; i < M; ++i) {
            int prev = 0;
            for (int j = 0; j < N; ++j) {
                int cur = dp[j + 1];
                if (A[i][j] == '1') dp[j + 1] = 1 + min({ prev, dp[j], dp[j + 1] });
                else dp[j + 1] = 0;
                prev = cur;
                ans = max(ans, dp[j + 1]);
            }
        }
        return ans * ans;
    }
};