Given an integer array nums
and an integer k
, return the number of pairs (i, j)
where i < j
such that |nums[i] - nums[j]| == k
.
The value of |x|
is defined as:
x
ifx >= 0
.-x
ifx < 0
.
Example 1:
Input: nums = [1,2,2,1], k = 1 Output: 4 Explanation: The pairs with an absolute difference of 1 are: - [1,2,2,1] - [1,2,2,1] - [1,2,2,1] - [1,2,2,1]
Example 2:
Input: nums = [1,3], k = 3 Output: 0 Explanation: There are no pairs with an absolute difference of 3.
Example 3:
Input: nums = [3,2,1,5,4], k = 2 Output: 3 Explanation: The pairs with an absolute difference of 2 are: - [3,2,1,5,4] - [3,2,1,5,4] - [3,2,1,5,4]
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 100
1 <= k <= 99
Similar Questions:
// OJ: https://leetcode.com/problems/count-number-of-pairs-with-absolute-difference-k/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(1)
class Solution {
public:
int countKDifference(vector<int>& A, int k) {
int N = A.size(), ans = 0;
for (int i = 0; i < N; ++i) {
for (int j = i + 1; j < N; ++j) {
ans += abs(A[i] - A[j]) == k;
}
}
return ans;
}
};
After sorting the array A
, we can use sliding window to count the number of elements == A[i] + k
so that we just traverse A
once.
// OJ: https://leetcode.com/problems/count-number-of-pairs-with-absolute-difference-k/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(1)
class Solution {
public:
int countKDifference(vector<int>& A, int k) {
int N = A.size(), ans = 0, j = 0;
sort(begin(A), end(A));
for (int i = 0; i < N; ) {
int n = A[i], cnt = 0;
while (i < N && A[i] == n) ++i, ++cnt;
while (j < N && A[j] < n + k) ++j;
int start = j;
while (j < N && A[j] == n + k) ++j;
ans += (j - start) * cnt;
}
return ans;
}
};
// OJ: https://leetcode.com/problems/count-number-of-pairs-with-absolute-difference-k/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(C) where `C` is the range of numbers in `A`.
class Solution {
public:
int countKDifference(vector<int>& A, int k) {
int N = A.size(), ans = 0, cnt[101] = {};
for (int n : A) {
ans += (n + k <= 100 ? cnt[n + k] : 0) + (n - k >= 1 ? cnt[n - k] : 0);
cnt[n]++;
}
return ans;
}
};