Skip to content

Latest commit

 

History

History
 
 

1862

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Given an integer array nums, return the sum of floor(nums[i] / nums[j]) for all pairs of indices 0 <= i, j < nums.length in the array. Since the answer may be too large, return it modulo 109 + 7.

The floor() function returns the integer part of the division.

 

Example 1:

Input: nums = [2,5,9]
Output: 10
Explanation:
floor(2 / 5) = floor(2 / 9) = floor(5 / 9) = 0
floor(2 / 2) = floor(5 / 5) = floor(9 / 9) = 1
floor(5 / 2) = 2
floor(9 / 2) = 4
floor(9 / 5) = 1
We calculate the floor of the division for every pair of indices in the array then sum them up.

Example 2:

Input: nums = [7,7,7,7,7,7,7]
Output: 49

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

Companies:
Rakuten

Related Topics:
Math

Solution 1. Binary Search

Intuition: Sort the array A. For each A[i], we can binary search A[p] >= (k - 1) * A[i] and A[q] >= k * A[i], then all numbers A[j] with index in range [p, q) has floor(A[j] / A[i]) = k - 1.

Algorithm:

  1. Sort the array A.
  2. For each A[i], first count the duplicate of A[i]. If we have dup duplicates, then they will add dup^2 to the answer.
  3. For the first A[j] > A[i], let div = A[j] / A[i], we use binary search to find the first A[next] >= A[i] * (div + 1), then numbers A[t] where t is in [j, next) will have floor(A[t] / A[i]) = div. These numbers will add (next - j) * div * dup to the answer.
// OJ: https://leetcode.com/problems/sum-of-floored-pairs/
// Author: github.com/lzl124631x
// Time: O(?)
// Space: O(1)
class Solution {
public:
    int sumOfFlooredPairs(vector<int>& A) {
        long mod = 1e9 + 7, N = A.size(), ans = 0;
        sort(begin(A), end(A));
        for (int i = 0; i < N; ) {
            long j = i + 1;
            while (j < N && A[j] == A[j - 1]) ++j; // skip the duplicates of `A[i]`
            long dup = j - i;
            ans = (ans + dup * dup % mod) % mod; // the `dup` duplicates add `dup * dup` to the answer
            while (j < N) {
                long div = A[j] / A[i], bound = A[i] * (div + 1);
                long next = lower_bound(begin(A) + j, end(A), bound) - begin(A); // find the first number `A[next] >= A[i] * (div + 1)`
                ans = (ans + (next - j) * div % mod * dup % mod) % mod; // Each A[t] (j <= t < next) will add `div * dup` to the answer.
                j = next;
            }
            i += dup;
        }
        return ans;
    }
};

Solution 2. Frequency Prefix Sum

A:       [1,1,2,2,2,3,5,8,8]

          1,2,3,4,5,6,7,8
freq:    [2,3,1,0,1,0,0,2]

freq      1,2,3,4,5,6,7,8
prefix : [2,5,6,6,7,7,7,9]
sum
// OJ: https://leetcode.com/problems/sum-of-floored-pairs/
// Author: github.com/lzl124631x
// Time: O()
// Space: O()
class Solution {
public:
    int sumOfFlooredPairs(vector<int>& A) {
        unordered_map<int, int> freq;
        long prefix[100001] = {};
        long mx = *max_element(begin(A), end(A)), ans = 0, mod = 1e9 + 7;
        for (int n : A) freq[n]++;
        for (int i = 1; i <= mx; ++i) {
            prefix[i] += prefix[i - 1];
            if (freq.count(i)) prefix[i] += freq[i];
        }
        for (auto &[n, cnt] : freq) {
            for (long i = 1; i <= mx / n; ++i) {
                ans = (ans + i * cnt % mod * (prefix[min(n * (i + 1) - 1, mx)] - prefix[n * i - 1]) % mod) % mod;
            }
        }
        return ans;
    }
};