Skip to content

Latest commit

 

History

History
 
 

1771

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

You are given two strings, word1 and word2. You want to construct a string in the following manner:

  • Choose some non-empty subsequence subsequence1 from word1.
  • Choose some non-empty subsequence subsequence2 from word2.
  • Concatenate the subsequences: subsequence1 + subsequence2, to make the string.

Return the length of the longest palindrome that can be constructed in the described manner. If no palindromes can be constructed, return 0.

A subsequence of a string s is a string that can be made by deleting some (possibly none) characters from s without changing the order of the remaining characters.

A palindrome is a string that reads the same forward as well as backward.

 

Example 1:

Input: word1 = "cacb", word2 = "cbba"
Output: 5
Explanation: Choose "ab" from word1 and "cba" from word2 to make "abcba", which is a palindrome.

Example 2:

Input: word1 = "ab", word2 = "ab"
Output: 3
Explanation: Choose "ab" from word1 and "a" from word2 to make "aba", which is a palindrome.

Example 3:

Input: word1 = "aa", word2 = "bb"
Output: 0
Explanation: You cannot construct a palindrome from the described method, so return 0.

 

Constraints:

  • 1 <= word1.length, word2.length <= 1000
  • word1 and word2 consist of lowercase English letters.

Related Topics:
Dynamic Programming

Similar Questions:

Solution 1. DP

// OJ: https://leetcode.com/problems/maximize-palindrome-length-from-subsequences/
// Author: github.com/lzl124631x
// Time: O(MM + NN + MN)
// Space: O(MM + NN + MN)
class Solution {
public:
    int longestPalindrome(string A, string B) {
        reverse(begin(A), end(A));
        int M = A.size(), N = B.size();
        vector<vector<int>> dp(M + 1, vector<int>(N + 1, 0));
        vector<vector<int>> X(A.size(), vector<int>(A.size(), 1)), Y(N, vector<int>(B.size(), 1));
        for (int len = 2; len <= M; ++len) {
            for (int i = 0; i <= M - len; ++i) {
                if (A[i] == A[i + len - 1]) X[i][i + len - 1] = 2 + (i + 1 <= i + len - 2 ? X[i + 1][i + len - 2] : 0);
                else X[i][i + len - 1] = max(X[i + 1][i + len - 1], X[i][i + len - 2]);
            }
        }
        for (int len = 2; len <= N; ++len) {
            for (int i = 0; i <= N - len; ++i) {
                if (B[i] == B[i + len - 1]) Y[i][i + len - 1] = 2 + (i + 1 <= i + len - 2 ? Y[i + 1][i + len - 2] : 0);
                else Y[i][i + len - 1] = max(Y[i + 1][i + len - 1], Y[i][i + len - 2]);
            }
        }
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                if (A[i] == B[j]) {
                    dp[i + 1][j + 1] = 2 + max({dp[i][j], i > 0 ? X[0][i - 1] : 0, j > 0 ? Y[0][j - 1] : 0 });
                } else {
                    dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]);
                }
            }
        }
        return dp[M][N];
    }
};

Solution 2. DP

// OJ: https://leetcode.com/problems/maximize-palindrome-length-from-subsequences/
// Author: github.com/lzl124631x
// Time: O((M + N)^2)
// Space: O((M + N)^2)
// Ref: https://leetcode.com/problems/maximize-palindrome-length-from-subsequences/discuss/1075453/C%2B%2B-Longest-Palindromic-Subsequence
class Solution {
    vector<vector<int>> longestPalindromeSubseq(string s) {
        int N = s.size();
        vector<vector<int>> dp(N, vector<int>(N));
        for (int i = N - 1; i >= 0; --i) {
            for (int j = i; j < N; ++j) {
                if (i == j) dp[i][j] = 1;
                else if (s[i] == s[j]) dp[i][j] = 2 + dp[i + 1][j - 1];
                else dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
            }
        }
        return dp;
    }
public:
    int longestPalindrome(string A, string B) {
        auto dp = longestPalindromeSubseq(A + B);
        int ans = 0;
        for (int i = 0; i < A.size(); ++i) {
            for (int j = B.size() - 1; j >= 0; --j) {
                if (A[i] == B[j]) {
                    ans = max(ans, dp[i][A.size() + j]);
                    break; // Once we find a valid palindrome starting with `A[i]`, it must be the longest among all those starting with `A[i]` because we are traversing `j` in the reverse order. So we can break here.
                }
            }
        }
        return ans;
    }
};