You are given a rows x cols
matrix grid
. Initially, you are located at the top-left corner (0, 0)
, and in each step, you can only move right or down in the matrix.
Among all possible paths starting from the top-left corner (0, 0)
and ending in the bottom-right corner (rows - 1, cols - 1)
, find the path with the maximum non-negative product. The product of a path is the product of all integers in the grid cells visited along the path.
Return the maximum non-negative product modulo 109 + 7
. If the maximum product is negative return -1
.
Notice that the modulo is performed after getting the maximum product.
Example 1:
Input: grid = [[-1,-2,-3], [-2,-3,-3], [-3,-3,-2]] Output: -1 Explanation: It's not possible to get non-negative product in the path from (0, 0) to (2, 2), so return -1.
Example 2:
Input: grid = [[1,-2,1], [1,-2,1], [3,-4,1]] Output: 8 Explanation: Maximum non-negative product is in bold (1 * 1 * -2 * -4 * 1 = 8).
Example 3:
Input: grid = [[1, 3], [0,-4]] Output: 0 Explanation: Maximum non-negative product is in bold (1 * 0 * -4 = 0).
Example 4:
Input: grid = [[ 1, 4,4,0], [-2, 0,0,1], [ 1,-1,1,1]] Output: 2 Explanation: Maximum non-negative product is in bold (1 * -2 * 1 * -1 * 1 * 1 = 2).
Constraints:
1 <= rows, cols <= 15
-4 <= grid[i][j] <= 4
Related Topics:
Dynamic Programming, Greedy
// OJ: https://leetcode.com/problems/maximum-non-negative-product-in-a-matrix/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
int maxProductPath(vector<vector<int>>& G) {
long ans = 0, mod = 1e9+7, M = G.size(), N = G[0].size();
vector<vector<pair<long, long>>> dp(M + 1, vector<pair<long, long>>(N + 1, { INT_MAX, INT_MIN })); // min, max
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
if (i == 0 && j == 0) dp[i][j] = {G[i][j], G[i][j]};
if (i != 0) {
dp[i][j].first = min(dp[i - 1][j].first * G[i][j], dp[i - 1][j].second * G[i][j]);
dp[i][j].second = max(dp[i - 1][j].first * G[i][j], dp[i - 1][j].second * G[i][j]);
}
if (j != 0) {
dp[i][j].first = min({ dp[i][j].first, dp[i][j - 1].first * G[i][j], dp[i][j - 1].second * G[i][j] });
dp[i][j].second = max({ dp[i][j].second, dp[i][j - 1].first * G[i][j], dp[i][j - 1].second * G[i][j] });
}
}
}
return dp[M - 1][N - 1].second < 0 ? -1 : (dp[M - 1][N - 1].second % mod);
}
};
// OJ: https://leetcode.com/problems/maximum-non-negative-product-in-a-matrix/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
int maxProductPath(vector<vector<int>>& G) {
long ans = 0, mod = 1e9+7, M = G.size(), N = G[0].size();
vector<pair<long, long>> dp(N + 1); // min, max
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
long mn = INT_MAX, mx = INT_MIN;
if (i == 0 && j == 0) mn = mx = G[i][j];
if (i != 0) {
mn = min(dp[j].first * G[i][j], dp[j].second * G[i][j]);
mx = max(dp[j].first * G[i][j], dp[j].second * G[i][j]);
}
if (j != 0) {
mn = min({ mn, dp[j - 1].first * G[i][j], dp[j - 1].second * G[i][j] });
mx = max({ mx, dp[j - 1].first * G[i][j], dp[j - 1].second * G[i][j] });
}
dp[j] = { mn, mx };
}
}
return dp[N - 1].second < 0 ? -1 : (dp[N - 1].second % mod);
}
};