Given a directed acyclic graph, with n
vertices numbered from 0
to n-1
, and an array edges
where edges[i] = [fromi, toi]
represents a directed edge from node fromi
to node toi
.
Find the smallest set of vertices from which all nodes in the graph are reachable. It's guaranteed that a unique solution exists.
Notice that you can return the vertices in any order.
Example 1:
Input: n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]] Output: [0,3] Explanation: It's not possible to reach all the nodes from a single vertex. From 0 we can reach [0,1,2,5]. From 3 we can reach [3,4,2,5]. So we output [0,3].
Example 2:
Input: n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]] Output: [0,2,3] Explanation: Notice that vertices 0, 3 and 2 are not reachable from any other node, so we must include them. Also any of these vertices can reach nodes 1 and 4.
Constraints:
2 <= n <= 10^5
1 <= edges.length <= min(10^5, n * (n - 1) / 2)
edges[i].length == 2
0 <= fromi, toi < n
- All pairs
(fromi, toi)
are distinct.
Related Topics:
Graph
// OJ: https://leetcode.com/problems/minimum-number-of-vertices-to-reach-all-nodes/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
vector<int> findSmallestSetOfVertices(int n, vector<vector<int>>& E) {
vector<int> degree(n), ans;
for (auto &e : E) degree[e[1]]++;
for (int i = 0; i < n; ++i) {
if (degree[i] == 0) ans.push_back(i);
}
return ans;
}
};