Skip to content

Latest commit

 

History

History
 
 

1478

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Given the array houses and an integer k. where houses[i] is the location of the ith house along a street, your task is to allocate k mailboxes in the street.

Return the minimum total distance between each house and its nearest mailbox.

The answer is guaranteed to fit in a 32-bit signed integer.

 

Example 1:

Input: houses = [1,4,8,10,20], k = 3
Output: 5
Explanation: Allocate mailboxes in position 3, 9 and 20.
Minimum total distance from each houses to nearest mailboxes is |3-1| + |4-3| + |9-8| + |10-9| + |20-20| = 5 

Example 2:

Input: houses = [2,3,5,12,18], k = 2
Output: 9
Explanation: Allocate mailboxes in position 3 and 14.
Minimum total distance from each houses to nearest mailboxes is |2-3| + |3-3| + |5-3| + |12-14| + |18-14| = 9.

Example 3:

Input: houses = [7,4,6,1], k = 1
Output: 8

Example 4:

Input: houses = [3,6,14,10], k = 4
Output: 0

 

Constraints:

  • n == houses.length
  • 1 <= n <= 100
  • 1 <= houses[i] <= 10^4
  • 1 <= k <= n
  • Array houses contain unique integers.

Related Topics:
Math, Dynamic Programming

Solution 1. DP

Given i and j which are the indexes of two houses, what's the optimal mailbox position?

Consider input [1, 4, 10], we should put the mailbox at 4.

Consider input [1, 2, 4, 10], we should put the mailbox at a position in range [2, 4]. Assume we pick 2.

So in both cases we can pick A[(i + j) / 2].

Let dist(i, j) be this optimal total distance. dist(i, j) = sum( abs(A[k] - A[(i + j) / 2] | i <= k <= j ).

Let dp[k][i + 1] be the answer to the subproblem with k mailboxes and houses [0 .. i].

For dp[k][i + 1], we can try spliting with length j such that houses [0 .. j-1] use k - 1 mailboxes and houses [j .. i] use one mailbox.

dp[k][i + 1] = min( dp[k - 1][j] + dist[j][i] | k - 1 <= j <= i ) where k <= i + 1

dp[1][i + 1] = dist[0][i]
// OJ: https://leetcode.com/problems/allocate-mailboxes/
// Author: github.com/lzl124631x
// Time: O(N^3)
// Space: O(N^2)
class Solution {
public:
    int minDistance(vector<int>& A, int K) {
        if (A.size() == K) return 0;
        sort(begin(A), end(A));
        int N = A.size(); 
        vector<vector<int>> dist(N, vector<int>(N));
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                int m = A[(i + j) / 2];
                for (int k = i; k <= j; ++k) dist[i][j] += abs(A[k] - m);
            }
        }
        vector<vector<int>> dp(K + 1, vector<int> (N + 1, 1e6));
        for (int i = 0; i < N; ++i) dp[1][i + 1] = dist[0][i];
        for (int k = 2; k <= K; ++k) {
            for (int i = 0; i < N; ++i) {
                for (int j = i; j >= k - 1; --j) {
                    dp[k][i + 1] = min(dp[k][i + 1], dp[k - 1][j] + dist[j][i]);
                }
            }
        }
        return dp[K][N];
    }
};

Solution 2. DP

Consider input [1, 4, 10], we should put the mailbox at 4 so that the total distance is 10 - 1.

Consider input [1, 2, 4, 10], we should put the mailbox at a position in range [2, 4], so that the total distance is (4 + 10) - (1 + 2).

Let dist(i, j) be this optimal total distance. dist(i, j) = sum((i + j + 1) / 2, j) - sum(i, (i + j) / 2), where sum(a, b) = sum( A[i] | a <= i <= b ).

Let presum[i + 1] = sum( A[k] | 0 <= k <= i ). Then sum(a, b) = presum(b + 1) - presum(a), so:

dist(i, j) = (presum(j + 1) - presum((i + j + 1) / 2)) - (presum((i + j) / 2 + 1) - presum(i))

Another optimization is that we can use 1D array for dp.

// OJ: https://leetcode.com/problems/allocate-mailboxes/
// Author: github.com/lzl124631x
// Time: O(N^2 * K)
// Space: O(N)
// Ref: https://leetcode.com/problems/allocate-mailboxes/discuss/685403/JavaC%2B%2BPython-DP-Solution
class Solution {
    int dist(vector<int> &presum, int i, int j) {
        return (presum[j + 1] - presum[(i + j + 1) / 2]) - (presum[(i + j) / 2 + 1] - presum[i]);
    }
public:
    int minDistance(vector<int>& A, int K) {
        if (A.size() == K) return 0;
        sort(begin(A), end(A));
        int N = A.size(); 
        vector<int> presum(N + 1);
        for (int i = 0; i < N; ++i) presum[i + 1] = presum[i] + A[i];
        vector<int> dp(N + 1, 1e6);
        for (int i = 0; i < N; ++i) dp[i + 1] = dist(presum, 0, i);
        for (int k = 2; k <= K; ++k) {
            for (int i = N - 1; i >= 0; --i) {
                for (int j = i; j >= k - 1; --j) {
                    dp[i + 1] = min(dp[i + 1], dp[j] + dist(presum, j, i));
                }
            }
        }
        return dp[N];
    }
};