-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.go
266 lines (253 loc) · 7.1 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
package main
import (
"flag"
"fmt"
"os"
"sort"
"strings"
"github.com/crillab/gophersat/bf"
"github.com/crillab/gophersat/explain"
"github.com/crillab/gophersat/maxsat"
"github.com/crillab/gophersat/solver"
)
const helpString = "This is gophersat version 1.3, a SAT and Pseudo-Boolean solver by Fabien Delorme.\n"
func main() {
// defer profile.Start().Stop()
var (
verbose bool
cert bool
mus bool
count bool
cp bool
help bool
)
flag.BoolVar(&verbose, "verbose", false, "sets verbose mode on")
flag.BoolVar(&cert, "certified", false, "displays RUP certificate on stdout")
flag.BoolVar(&mus, "mus", false, "extracts a MUS from an unsat problem")
flag.BoolVar(&count, "count", false, "rather than solving the problem, counts the number of models it accepts")
flag.BoolVar(&cp, "cp", false, "use cutting planes for resolution")
flag.BoolVar(&help, "help", false, "displays help")
flag.Parse()
if !help && len(flag.Args()) != 1 {
fmt.Print(helpString)
fmt.Fprintf(os.Stderr, "Syntax : %s [options] (file.cnf|file.wcnf|file.bf|file.opb)\n", os.Args[0])
flag.PrintDefaults()
os.Exit(1)
}
if help {
fmt.Print(helpString)
fmt.Printf("Syntax : %s [options] (file.cnf|file.wcnf|file.bf|file.opb)\n", os.Args[0])
flag.PrintDefaults()
os.Exit(0)
}
path := flag.Args()[0]
if mus {
extractMUS(path)
} else {
fmt.Printf("c solving %s\n", path)
if strings.HasSuffix(path, ".bf") {
if err := parseAndSolveBF(path); err != nil {
fmt.Fprintf(os.Stderr, "could not parse formula: %v\n", err)
os.Exit(1)
}
} else if strings.HasSuffix(path, ".wcnf") {
if err := parseAndSolveWCNF(path, verbose); err != nil {
fmt.Fprintf(os.Stderr, "could not parse MAXSAT file %q: %v", path, err)
os.Exit(1)
}
} else {
if pb, printFn, err := parse(flag.Args()[0]); err != nil {
fmt.Fprintf(os.Stderr, "could not parse problem: %v\n", err)
os.Exit(1)
} else if count {
countModels(pb, verbose)
} else {
solve(pb, verbose, cert, cp, printFn)
}
}
}
}
func extractMUS(path string) {
f, err := os.Open(path)
if err != nil {
fmt.Fprintf(os.Stderr, "could not parse problem: %v\n", err)
os.Exit(1)
}
defer f.Close()
pb, err := explain.ParseCNF(f)
if err != nil {
fmt.Fprintf(os.Stderr, "could not parse problem: %v\n", err)
os.Exit(1)
}
pb2, err := pb.MUS()
if err != nil {
fmt.Fprintf(os.Stderr, "could not extract subset: %v\n", err)
os.Exit(1)
}
fmt.Println(pb2)
fmt.Println(pb2.CNF())
}
func countModels(pb *solver.Problem, verbose bool) {
s := solver.New(pb)
if verbose {
fmt.Printf("c ======================================================================================\n")
fmt.Printf("c | Number of non-unit clauses : %9d |\n", len(pb.Clauses))
fmt.Printf("c | Number of variables : %9d |\n", pb.NbVars)
s.Verbose = true
}
models := make(chan []bool)
go s.Enumerate(models, nil)
nb := 0
for range models {
nb++
if verbose {
fmt.Printf("c %d models found\n", nb)
}
}
fmt.Println(nb)
}
func solve(pb *solver.Problem, verbose, cert, cp bool, printFn func(chan solver.Result)) {
if cp {
pb.DetectAtMostOne()
}
s := solver.New(pb)
if verbose {
fmt.Printf("c ======================================================================================\n")
fmt.Printf("c | Number of non-unit clauses : %9d |\n", len(pb.Clauses))
fmt.Printf("c | Number of variables : %9d |\n", pb.NbVars)
s.Verbose = true
}
s.Certified = cert
s.CuttingPlanes = cp
results := make(chan solver.Result)
go s.Optimal(results, nil)
printFn(results)
if verbose {
fmt.Printf("c nb conflicts: %d\nc nb restarts: %d\nc nb decisions: %d\n", s.Stats.NbConflicts, s.Stats.NbRestarts, s.Stats.NbDecisions)
fmt.Printf("c nb unit learned: %d\nc nb binary learned: %d\nc nb learned: %d\n", s.Stats.NbUnitLearned, s.Stats.NbBinaryLearned, s.Stats.NbLearned)
fmt.Printf("c nb learned clauses deleted: %d\n", s.Stats.NbDeleted)
}
}
func parseAndSolveWCNF(path string, verbose bool) error {
f, err := os.Open(path)
if err != nil {
return fmt.Errorf("could not open %q: %v", path, err)
}
defer f.Close()
s, err := maxsat.ParseWCNF(f)
if err != nil {
return fmt.Errorf("could not parse wcnf content: %v", err)
}
results := make(chan solver.Result)
go s.Optimal(results, nil)
printOptimizationResults(results)
return nil
}
func parseAndSolveBF(path string) error {
f, err := os.Open(path)
if err != nil {
return fmt.Errorf("could not open %q: %v", path, err)
}
defer f.Close()
form, err := bf.Parse(f)
if err != nil {
return fmt.Errorf("could not parse formula in %q: %v", path, err)
}
solveBF(form)
return nil
}
func parse(path string) (pb *solver.Problem, printFn func(chan solver.Result), err error) {
f, err := os.Open(path)
if err != nil {
return nil, nil, fmt.Errorf("could not open %q: %v", path, err)
}
defer f.Close()
if strings.HasSuffix(path, ".bf") {
_, err := bf.Parse(f)
if err != nil {
return nil, nil, fmt.Errorf("could not parse %q: %v", path, err)
}
panic("not yet implemented")
}
if strings.HasSuffix(path, ".cnf") {
pb, err := solver.ParseCNF(f)
if err != nil {
return nil, nil, fmt.Errorf("could not parse DIMACS file %q: %v", path, err)
}
return pb, printDecisionResults, nil
}
if strings.HasSuffix(path, ".opb") {
pb, err := solver.ParseOPB(f)
if err != nil {
return nil, nil, fmt.Errorf("could not parse OPB file %q: %v", path, err)
}
return pb, printOptimizationResults, nil
}
return nil, nil, fmt.Errorf("invalid file format for %q", path)
}
func solveBF(f bf.Formula) {
if model := bf.Solve(f); model == nil {
fmt.Println("UNSATISFIABLE")
} else {
fmt.Println("SATISFIABLE")
keys := make(sort.StringSlice, 0, len(model))
for k := range model {
keys = append(keys, k)
}
sort.Sort(keys)
for _, k := range keys {
fmt.Printf("%s: %t\n", k, model[k])
}
}
}
// prints the result to a SAT decision problem in the competition format.
func printDecisionResults(results chan solver.Result) {
var res solver.Result
for res = range results {
}
switch res.Status {
case solver.Unsat:
fmt.Println("s UNSATISFIABLE")
case solver.Sat:
fmt.Println("s SATISFIABLE")
fmt.Printf("v ")
for i := range res.Model {
val := i + 1
if !res.Model[i] {
val = -i - 1
}
fmt.Printf("%d ", val)
}
fmt.Println("0")
default:
fmt.Println("s UNKNOWN")
}
}
// prints the result to a PB optimization problem in the competition format.
func printOptimizationResults(results chan solver.Result) {
var res solver.Result
for res = range results {
if res.Status == solver.Sat {
fmt.Printf("o %d\n", res.Weight)
}
}
switch res.Status {
case solver.Unsat:
fmt.Println("s UNSATISFIABLE")
case solver.Sat:
fmt.Println("s OPTIMUM FOUND")
fmt.Printf("v ")
for i := 0; i < len(res.Model); i++ {
var val string
if !res.Model[i] {
val = fmt.Sprintf("-x%d", i+1)
} else {
val = fmt.Sprintf("x%d", i+1)
}
fmt.Printf("%s ", val)
}
fmt.Println()
default:
fmt.Println("s UNKNOWN")
}
}