-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathindex.html
1012 lines (770 loc) · 68.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<!-- hexo-inject:begin --><!-- hexo-inject:end --><meta charset="utf-8">
<title>CreateMoMo</title>
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<meta property="og:type" content="website">
<meta property="og:title" content="CreateMoMo">
<meta property="og:url" content="http://createmomo.github.io/index.html">
<meta property="og:site_name" content="CreateMoMo">
<meta property="og:locale" content="default">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="CreateMoMo">
<link rel="icon" href="/favicon.png">
<link href="//fonts.googleapis.com/css?family=Source+Code+Pro" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="/css/style.css"><!-- hexo-inject:begin --><!-- hexo-inject:end -->
</head>
<body>
<!-- hexo-inject:begin --><!-- hexo-inject:end --><div id="container">
<div id="wrap">
<header id="header">
<div id="banner"></div>
<div id="header-outer" class="outer">
<div id="header-title" class="inner">
<h1 id="logo-wrap">
<a href="/" id="logo">CreateMoMo</a>
</h1>
</div>
<div id="header-inner" class="inner">
<nav id="main-nav">
<a id="main-nav-toggle" class="nav-icon"></a>
<a class="main-nav-link" href="/">Home</a>
<a class="main-nav-link" href="/archives">Archives</a>
</nav>
<nav id="sub-nav">
<a id="nav-search-btn" class="nav-icon" title="Search"></a>
</nav>
<div id="search-form-wrap">
<form action="//google.com/search" method="get" accept-charset="UTF-8" class="search-form"><input type="search" name="q" class="search-form-input" placeholder="Search"><button type="submit" class="search-form-submit"></button><input type="hidden" name="sitesearch" value="http://createmomo.github.io"></form>
</div>
</div>
</div>
</header>
<div class="outer">
<section id="main">
<article id="post-Table-of-Contents" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2025/02/20/Table-of-Contents/" class="article-date">
<time datetime="2025-02-20T14:10:00.000Z" itemprop="datePublished">2025-02-20</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2025/02/20/Table-of-Contents/">Table of Contents</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<hr>
<p><a href="https://github.com/createmomo" target="_blank" rel="external">[Github] https://github.com/createmomo (You can also find the Wechat Public Account here)</a></p>
<p>Most blog posts have <strong>both English and Chinese versions</strong>, with only a few exceptions written solely in Chinese.</p>
<p><strong>Collections (Post Series)</strong></p>
<ul>
<li>[2025-2026, Planning…]<ul>
<li>Language Model Learning & Practice (Student-Oriented Series) (TBD)</li>
<li>Current Trends in Goal-Guided Conversational AI Models (TBD)</li>
<li>Using Language Models in Specific Domains (TBD)</li>
</ul>
</li>
<li>[2024-2025] Use AI to Detect AI-Generated Text<ul>
<li><a href="https://mp.weixin.qq.com/s/4d--8wwXjDYxMiMsD_djuQ" target="_blank" rel="external">1 Introduction</a></li>
<li><a href="https://mp.weixin.qq.com/s/zUBLLfyEv6ERxvEEii4BCQ" target="_blank" rel="external">2 Testbed1~2</a></li>
<li><a href="https://mp.weixin.qq.com/s/h0llEBa7KE58Y-cimZsHgg" target="_blank" rel="external">3 Testbed3~4</a></li>
<li><a href="https://mp.weixin.qq.com/s/WBLUjQgHpkwdyBCPc_m3Vw" target="_blank" rel="external">4 Testbed5~8</a></li>
<li><a href="https://mp.weixin.qq.com/s/KFDOB0g-NIeqYRRFs4AuQw" target="_blank" rel="external">5 Key Experimental Details</a></li>
<li><a href="https://mp.weixin.qq.com/s/yiPEDvE1_bXWrRKa7IM4zA" target="_blank" rel="external">6 Results, ChatGPT&Human</a></li>
<li><a href="https://mp.weixin.qq.com/s/OBFwAMVdlQrgkKyjV2tgag" target="_blank" rel="external">7 Results, Testbed1</a></li>
<li><a href="https://mp.weixin.qq.com/s/ntVNeWO-wRGVNGexzrKePg" target="_blank" rel="external">8 Results, Testbed2~4</a></li>
<li><a href="https://mp.weixin.qq.com/s/DzImeUYDJilEcZodbEWaqw" target="_blank" rel="external">9 Results, Testbed5</a></li>
<li><a href="https://mp.weixin.qq.com/s/FnEfDJVs9XCDEtdea0t5TQ" target="_blank" rel="external">10 Results, Testbed6 & Tips for Setting Classification Thresholds</a></li>
<li><a href="https://mp.weixin.qq.com/s/vF0MECPRODf6HRbNG8ILUw" target="_blank" rel="external">11 Results, Testbed7</a></li>
<li><a href="https://mp.weixin.qq.com/s/Xw06zsQPlkF3gJdFQr3rJQ" target="_blank" rel="external">12 Results, Testbed8,Attempt to Evade being Detected by AI</a></li>
<li><a href="https://mp.weixin.qq.com/s/49OVCDeggJT_youXQVP0Rg" target="_blank" rel="external">13 Some interesting analyses</a></li>
<li><a href="https://mp.weixin.qq.com/s/R-v4yvqR9SbFqgSI5VsYOg" target="_blank" rel="external">14 Ghostbuster</a></li>
<li><a href="https://mp.weixin.qq.com/s/rltXQiILwok_Op5VuL2FsQ" target="_blank" rel="external">15 Ghostbuster (Results)</a></li>
<li><a href="https://mp.weixin.qq.com/s/Qa_UFz9f64_WBmHuI7a3Jg" target="_blank" rel="external">16 Ghostbuster (Make the Detector More Robust)</a></li>
<li><a href="https://mp.weixin.qq.com/s/M-HSPh8CHHsTJXzTWhXr-Q" target="_blank" rel="external">17 Ghostbuster (Again How to Avoid Being Detected by AI)</a></li>
</ul>
</li>
<li>[2023-2024] Using Language Models in Specific Domains <ul>
<li><a href="https://mp.weixin.qq.com/s/G24skuUbyrSatxWczVxEAg" target="_blank" rel="external">1 Introduction</a></li>
<li>2 Domain-specific Training Data<ul>
<li>[Any Domain] Use Unlabelled Text to Improve Instruction Following Language Models (Notes <a href="https://mp.weixin.qq.com/s/50wtP--W_cy-682g8cOYww" target="_blank" rel="external">1</a>, <a href="https://mp.weixin.qq.com/s/q7nKnwtEKPahABiLFLWuSw" target="_blank" rel="external">2</a>, <a href="https://mp.weixin.qq.com/s/CE8YNx19dc0EyNfTK_HYHQ" target="_blank" rel="external">3</a>, <a href="https://mp.weixin.qq.com/s/yj4gnoymNLFuLE1v94VJ9A" target="_blank" rel="external">4</a>, <a href="https://mp.weixin.qq.com/s/N4mUe7hrvXGFArl20kKRCA" target="_blank" rel="external">5</a>)</li>
<li>[Medical/Health] ChatDoctor (Notes <a href="https://mp.weixin.qq.com/s/zSeRKUZ2te1wxwpvByhcvg" target="_blank" rel="external">1</a>, <a href="https://mp.weixin.qq.com/s/TcwiQoIex7SDY5Teri9xnw" target="_blank" rel="external">2</a>, <a href="https://mp.weixin.qq.com/s/I1hXRS7gBMLUyOWMObfpBg" target="_blank" rel="external">3</a>; Slides <a href="https://github.com/createmomo/Open-Source-Language-Model-Pocket/blob/main/%E5%8D%83%E2%80%9C%E5%9E%82%E2%80%9D%E7%99%BE%E7%82%BC%20-%20%E3%80%90%E5%8C%BB%E7%96%97%26%E5%81%A5%E5%BA%B7%E3%80%91%20ChatDoctor%EF%BC%88%E4%B8%8A%EF%BC%89.pdf" target="_blank" rel="external">1</a>, <a href="https://github.com/createmomo/Open-Source-Language-Model-Pocket/blob/main/%E5%8D%83%E2%80%9C%E5%9E%82%E2%80%9D%E7%99%BE%E7%82%BC%20-%20%E3%80%90%E5%8C%BB%E7%96%97%26%E5%81%A5%E5%BA%B7%E3%80%91%20ChatDoctor%EF%BC%88%E4%B8%AD%EF%BC%89.pdf" target="_blank" rel="external">2</a>, <a href="https://github.com/createmomo/Open-Source-Language-Model-Pocket/blob/main/%E5%8D%83%E2%80%9C%E5%9E%82%E2%80%9D%E7%99%BE%E7%82%BC%20-%20%E3%80%90%E5%8C%BB%E7%96%97%26%E5%81%A5%E5%BA%B7%E3%80%91%20ChatDoctor%EF%BC%88%E4%B8%8B%EF%BC%89.pdf" target="_blank" rel="external">3</a>)</li>
<li>[Medical/Health] MedicalGPT-zh (<a href="https://mp.weixin.qq.com/s/QJKZYKh16fqLTC367WhzdA" target="_blank" rel="external">Notes</a>, <a href="https://github.com/createmomo/Open-Source-Language-Model-Pocket/blob/main/%E5%8D%83%E2%80%9C%E5%9E%82%E2%80%9D%E7%99%BE%E7%82%BC%20-%20%E3%80%90%E5%8C%BB%E7%96%97%26%E5%81%A5%E5%BA%B7%E3%80%91%20MedicalGPT-zh.pdf" target="_blank" rel="external">Slides</a>)</li>
<li>[Medical/Health] MING (<a href="https://mp.weixin.qq.com/s/uM4FZeDhAc6JuMlW7NCvUA" target="_blank" rel="external">Notes</a>, <a href="https://github.com/createmomo/Open-Source-Language-Model-Pocket/blob/main/%E5%8D%83%E2%80%9C%E5%9E%82%E2%80%9D%E7%99%BE%E7%82%BC%20-%20%E3%80%90%E5%8C%BB%E7%96%97%26%E5%81%A5%E5%BA%B7%E3%80%91%20MING.pdf" target="_blank" rel="external">Slides</a>)</li>
<li>[Medical/Health] SoulChat (<a href="https://mp.weixin.qq.com/s/0HOYSr-zQsGLFL_H9UZ2HA" target="_blank" rel="external">Notes</a>, <a href="https://github.com/createmomo/Open-Source-Language-Model-Pocket/blob/main/%E5%8D%83%E2%80%9C%E5%9E%82%E2%80%9D%E7%99%BE%E7%82%BC%20-%20%E3%80%90%E5%8C%BB%E7%96%97%26%E5%81%A5%E5%BA%B7%E3%80%91%20SoulChat.pdf" target="_blank" rel="external">Slides</a>)</li>
<li>[Mobile Interaction] Tiny Models, Mighty Powers - ReALM (<a href="https://mp.weixin.qq.com/s/gOmUi4_MGvU1Nx3KxXdxVQ" target="_blank" rel="external">1</a>, <a href="https://mp.weixin.qq.com/s/wTPMwtRVWIrioile-rFzQA" target="_blank" rel="external">2</a>, <a href="https://mp.weixin.qq.com/s/NgyZG0439UGFoVE7InrX9g" target="_blank" rel="external">3</a>, <a href="https://mp.weixin.qq.com/s/v1NEovURZr4v8R4_v7TjdA" target="_blank" rel="external">4</a>)</li>
</ul>
</li>
<li>3 Automatic Model Evaluation<ul>
<li>[Any Domain] Evaluating Language Models with Language Models (<a href="https://mp.weixin.qq.com/s/SUN_ywkI8ld1edXY7uq_1Q" target="_blank" rel="external">1 Introduction</a>)</li>
<li>[Any Domain] Evaluating Language Models with Language Models (<a href="https://mp.weixin.qq.com/s/NTFu53MdVD9NusFJaORHcw" target="_blank" rel="external">2 PandaLM</a>)</li>
<li>[Any Domain] Evaluating Language Models with Language Models (3 Shepherd, <a href="https://mp.weixin.qq.com/s/pbK1Zsv9j_DVtOJaTm_tPw" target="_blank" rel="external">1</a>,<a href="https://mp.weixin.qq.com/s/n4_kVw8j42ZQv6VjQ_P-Dw" target="_blank" rel="external">2</a>,<a href="https://mp.weixin.qq.com/s/PeGJOmQPyAhwl7czJgKnQQ" target="_blank" rel="external">3</a>,<a href="https://mp.weixin.qq.com/s/7_NX7S2AHabX-xU254sq5g" target="_blank" rel="external">4</a>)</li>
<li>[Medical/Health] <a href="https://mp.weixin.qq.com/s/I1hXRS7gBMLUyOWMObfpBg" target="_blank" rel="external">Comparing ChatDoctor and ChatGPT3.5 using BERT-Score</a></li>
</ul>
</li>
</ul>
</li>
<li>[2024] Tiny Models, Mighty Powers - ReALM (<a href="https://mp.weixin.qq.com/s/gOmUi4_MGvU1Nx3KxXdxVQ" target="_blank" rel="external">1</a>, <a href="https://mp.weixin.qq.com/s/wTPMwtRVWIrioile-rFzQA" target="_blank" rel="external">2</a>, <a href="https://mp.weixin.qq.com/s/NgyZG0439UGFoVE7InrX9g" target="_blank" rel="external">3</a>, <a href="https://mp.weixin.qq.com/s/v1NEovURZr4v8R4_v7TjdA" target="_blank" rel="external">4</a>)</li>
<li>[2023-2024] Use Unlabelled Text to Improve Instruction Following Language Models<ul>
<li><a href="https://mp.weixin.qq.com/s/50wtP--W_cy-682g8cOYww" target="_blank" rel="external">1 Introduction</a></li>
<li><a href="https://mp.weixin.qq.com/s/q7nKnwtEKPahABiLFLWuSw" target="_blank" rel="external">2 Initialisation & Self-Augmentation</a></li>
<li><a href="https://mp.weixin.qq.com/s/CE8YNx19dc0EyNfTK_HYHQ" target="_blank" rel="external">3 Self-Curation & Experiments</a></li>
<li><a href="https://mp.weixin.qq.com/s/yj4gnoymNLFuLE1v94VJ9A" target="_blank" rel="external">4 Some Conclusions I</a></li>
<li><a href="https://mp.weixin.qq.com/s/N4mUe7hrvXGFArl20kKRCA" target="_blank" rel="external">5 Some Conclusions II</a></li>
</ul>
</li>
<li>[2023] Evaluating Language Models with Language Models<ul>
<li><a href="https://mp.weixin.qq.com/s/SUN_ywkI8ld1edXY7uq_1Q" target="_blank" rel="external">1 Introduction</a></li>
<li><a href="https://mp.weixin.qq.com/s/NTFu53MdVD9NusFJaORHcw" target="_blank" rel="external">2 PandaLM</a></li>
<li>3 Shepherd (<a href="https://mp.weixin.qq.com/s/pbK1Zsv9j_DVtOJaTm_tPw" target="_blank" rel="external">1</a>, <a href="https://mp.weixin.qq.com/s/n4_kVw8j42ZQv6VjQ_P-Dw" target="_blank" rel="external">2</a>, <a href="https://mp.weixin.qq.com/s/PeGJOmQPyAhwl7czJgKnQQ" target="_blank" rel="external">3</a>, <a href="https://mp.weixin.qq.com/s/7_NX7S2AHabX-xU254sq5g" target="_blank" rel="external">4</a>)</li>
</ul>
</li>
<li>[2023-2025] Past of Goal-Guided Conversational AI Models<ul>
<li><a href="https://mp.weixin.qq.com/s/4Nk7SlUuHEReEZqspKaOsA" target="_blank" rel="external">1 Introduction</a></li>
<li><a href="https://mp.weixin.qq.com/s/AjZ_eB-R_0CoHRHStTROUw" target="_blank" rel="external">2 Target-Guided Open-Domain Conversation (ACL2019)</a></li>
<li><a href="https://mp.weixin.qq.com/s/XyuWwxjh8GjmUqIfqyta-g" target="_blank" rel="external">3 Proactive Human Machine Conversation with Explicit Conversation Goal (ACL2019)</a></li>
<li><a href="https://mp.weixin.qq.com/s/Q6VELpNa6tbBQM9-ve7k2g" target="_blank" rel="external">4 Towards Conversational Recommendation Over Multi-Type Dialogs (ACL2020)</a></li>
<li><a href="https://mp.weixin.qq.com/s/Q6VELpNa6tbBQM9-ve7k2g" target="_blank" rel="external">5 Knowledge Graph Grounded Goal Planning for Open-Domain Conversation Generation (AAAI2020)</a></li>
<li><a href="https://mp.weixin.qq.com/s/LSpeHrD8lqX5N7-wPp_U1g" target="_blank" rel="external">6 Towards Topic Guided Conversational Recommender System (Arxiv 2020)</a></li>
<li><a href="https://mp.weixin.qq.com/s/eSpUHnach2H7NAVsBRhTEw" target="_blank" rel="external">7 Towards Effective Automatic Debt Collection with Persona Awareness (EMNLP2023)</a></li>
<li><a href="https://mp.weixin.qq.com/s/eSpUHnach2H7NAVsBRhTEw" target="_blank" rel="external">8 Reinforcement Learning of Cooperative Persuasive Dialogue Policies Using Framing (COLING 2014)</a></li>
<li><a href="https://mp.weixin.qq.com/s/eSpUHnach2H7NAVsBRhTEw" target="_blank" rel="external">9 Dialogue Scenario Collection of Persuasive Dialogue with Emotional Expressions via Crowdsourcing (LREC 2018) </a></li>
<li><a href="https://mp.weixin.qq.com/s/eSpUHnach2H7NAVsBRhTEw" target="_blank" rel="external">10 Persuasion for Good: Towards a Personalized Persuasive Dialogue System for Social Good (ACL2019)</a></li>
<li><a href="https://mp.weixin.qq.com/s/VymkQn67M-T9iFG7xnJZQQ" target="_blank" rel="external">11 Quick Review</a></li>
<li><a href="https://mp.weixin.qq.com/s/qoACpY_3R8obPyfBe3k-xg" target="_blank" rel="external">12 OTTers: One-turn Topic Transitions for Open-Domain Dialogue (ACL&IJCNLP 2021)</a></li>
<li><a href="https://mp.weixin.qq.com/s/qoACpY_3R8obPyfBe3k-xg" target="_blank" rel="external">13 Towards a Universal NLG for Dialogue Systems and Simulators with Future Bridging(2021)</a></li>
<li><a href="https://mp.weixin.qq.com/s/8VOkqHV4VCiYprwsGVGj4Q" target="_blank" rel="external">14 SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues (ACL, 2022)</a></li>
</ul>
</li>
<li><a href="https://mp.weixin.qq.com/s/688c_nViJDmm0qK7Dh48VQ" target="_blank" rel="external">[2022-2024] Conference “Interesting”s</a><ul>
<li><a href="https://mp.weixin.qq.com/s/BlCqD72q8VagxXb4DYv2yw" target="_blank" rel="external">Interesting · LREC-COLING&NAACL2024</a></li>
<li><a href="https://mp.weixin.qq.com/s/_9grRwpnIhNse6b0zyKnUw" target="_blank" rel="external">Interesting · ACL2023</a></li>
<li><a href="https://mp.weixin.qq.com/s/weV5S56I25Y-ZnP3T7wMBg" target="_blank" rel="external">Interesting · EACL2023</a></li>
<li><a href="https://mp.weixin.qq.com/s/Q27hDyCk1eleICGaGE_LSw" target="_blank" rel="external">Interesting · EMNLP2023</a></li>
<li><a href="https://mp.weixin.qq.com/s/688c_nViJDmm0qK7Dh48VQ" target="_blank" rel="external">Interesting · ACL2022 (Findings)</a></li>
<li><a href="https://mp.weixin.qq.com/s/lL_NdyodR4qhG7aJ8q1aOw" target="_blank" rel="external">Interesting · ACL2022 (Short Papers)</a></li>
<li><a href="https://mp.weixin.qq.com/s/DiNUZiCsRl089MDtnGD0Qg" target="_blank" rel="external">Interesting · ACL2022 (Long Papers)</a></li>
<li><a href="https://mp.weixin.qq.com/s/JmQb9IUpxwG8RNaUjewRdg" target="_blank" rel="external">Interesting · NeurIPS2022</a></li>
<li><a href="https://mp.weixin.qq.com/s/_WmLZCJsx3AhHCbQ1fAEkw" target="_blank" rel="external">Interesting · EMNLP2022 (Findings&CL Papers)</a></li>
<li><a href="https://mp.weixin.qq.com/s/iJm0074zdFehBdQbfSpV3A" target="_blank" rel="external">Interesting · EMNLP2022 (Main Conference)</a></li>
</ul>
</li>
<li>[2023] Chinese Natural Language Understanding, NLU, in Dialogue Systems<ul>
<li><a href="https://mp.weixin.qq.com/s/R1GCRbfCXax0d7vS-vztdg" target="_blank" rel="external">1&2 Task Introduction&Chinese vs English in NLP</a></li>
<li><a href="https://mp.weixin.qq.com/s/x6mXrR8cujlGb16kKEj5kQ" target="_blank" rel="external">3.1 Academic Methods (Joint Training)</a></li>
<li><a href="https://mp.weixin.qq.com/s/ei2APDX2Ml4-L_TCy9JeYQ" target="_blank" rel="external">3.2 Academic Methods (Separate Training)</a></li>
<li><a href="https://mp.weixin.qq.com/s/r-16nEJ_rg9W97Fc735bLA" target="_blank" rel="external">4 Industry Methods</a></li>
<li><a href="https://mp.weixin.qq.com/s/j_SSSl7Ujq_3PC0sNNlfkA" target="_blank" rel="external">5&6 Chinese Dialogue System Challenge Track & Resources</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2021/04/05/Fantastic-Trees/">[2021] Fantastic Trees (Decision Trees, Random Forest, Adaboost, Gradient Boosting DT, XGBoost)</a></li>
<li><a href="https://createmomo.github.io/2019/11/01/Improving-Your-English-Communication-Skills/#tableofcontents">[2020] Improving Your English Communication Skills (Writing Emails, Speaking English and Building ePortfolio)</a></li>
<li>[2017] CRF Layer on the Top of BiLSTM<ul>
<li><a href="https://createmomo.github.io/2017/09/12/CRF_Layer_on_the_Top_of_BiLSTM_1/">CRF Layer on the Top of BiLSTM - 1</a> Outline and Introduction</li>
<li><a href="https://createmomo.github.io/2017/09/23/CRF_Layer_on_the_Top_of_BiLSTM_2/">CRF Layer on the Top of BiLSTM - 2</a> CRF Layer (Emission and Transition Score)</li>
<li><a href="https://createmomo.github.io/2017/10/08/CRF-Layer-on-the-Top-of-BiLSTM-3/">CRF Layer on the Top of BiLSTM - 3</a> CRF Loss Function</li>
<li><a href="https://createmomo.github.io/2017/10/17/CRF-Layer-on-the-Top-of-BiLSTM-4/">CRF Layer on the Top of BiLSTM - 4</a> Real Path Score</li>
<li><a href="https://createmomo.github.io/2017/11/11/CRF-Layer-on-the-Top-of-BiLSTM-5/">CRF Layer on the Top of BiLSTM - 5</a> The Total Score of All the Paths</li>
<li><a href="https://createmomo.github.io/2017/11/24/CRF-Layer-on-the-Top-of-BiLSTM-6/">CRF Layer on the Top of BiLSTM - 6</a> Infer the Labels for a New Sentence</li>
<li><a href="https://createmomo.github.io/2017/12/06/CRF-Layer-on-the-Top-of-BiLSTM-7/">CRF Layer on the Top of BiLSTM - 7</a> Chainer Implementation Warm Up</li>
<li><a href="https://createmomo.github.io/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/">CRF Layer on the Top of BiLSTM - 8</a> Demo Code<br><img src="/2025/02/20/Table-of-Contents/search.png" alt="Searching..."></li>
</ul>
</li>
</ul>
<p><strong>Notes (Single Post)</strong></p>
<ul>
<li><a href="https://github.com/createmomo/Open-Source-Language-Model-Pocket" target="_blank" rel="external">[2023-2025] Open-Source Language Model Pocket</a></li>
<li>[2023] Using ColossalAI SFT in <a href="https://mp.weixin.qq.com/s/Q29uSNxvPMy0rC-QxHiGZA" target="_blank" rel="external">Kaggle</a> or <a href="https://mp.weixin.qq.com/s/NS4yySeYd7QUYb7CB9V0lA" target="_blank" rel="external">Colab</a> (in Chinese)</li>
<li><a href="https://mp.weixin.qq.com/s/sVZuEkYXQ9ZZYXJCQz7F4A" target="_blank" rel="external">[2023] General Understanding of Decoding Strategies Commonly Used in Text Generation</a></li>
<li><a href="https://mp.weixin.qq.com/s/IwcfUP_j6JYFXH_xhnWWJQ" target="_blank" rel="external">[2022] Understand Gradient Checkpoint in Pytorch</a></li>
<li><a href="https://mp.weixin.qq.com/s/0d4y9VzSVIcqemqp5O7nzA" target="_blank" rel="external">[2022] Baidu World Conference 2022: AI Applications (in Chinese, Notes)</a></li>
<li><a href="https://mp.weixin.qq.com/s/EvD9OW115XMnrxOcC2BKDA" target="_blank" rel="external">[2021] GPT Understands, Too</a></li>
<li><a href="https://mp.weixin.qq.com/s/4HU5xlDNzWBV-R8ZOgzDnw" target="_blank" rel="external">[2021] Super Git Revision Notes</a></li>
<li><a href="https://mp.weixin.qq.com/s/5vcHavFsMEBbHX9KrycEIQ" target="_blank" rel="external">[2021] Baidu World Conference 2021: AI Applications (in Chinese, Notes)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#tableofcontents">[2019] Probabilistic Graphical Models Revision Notes</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#tableofcontents">[2018] Super Machine Learning Revision Notes</a></li>
</ul>
<p><strong>Paper Explained</strong></p>
<ul>
<li><a href="https://mp.weixin.qq.com/s/4JAjBnaZAORLYxpRHJuw3w" target="_blank" rel="external">[2021] Few-Shot Text Classification with Distributional Signatures (ICLR 2020) Part1</a></li>
<li><a href="https://mp.weixin.qq.com/s/XqsY4tLSdDfm56Rf0RQEYg" target="_blank" rel="external">[2021] Few-Shot Text Classification with Distributional Signatures (ICLR 2020) Part2</a></li>
<li><a href="https://mp.weixin.qq.com/s/eIMgovLpvoQSm9qcl2UwLg" target="_blank" rel="external">[2021] Few-Shot Text Classification with Distributional Signatures (ICLR 2020) Part3</a></li>
</ul>
<hr>
<p><strong><em>Detailed Links:</em></strong><br><a href="https://createmomo.github.io/2021/04/05/Fantastic-Trees/"><strong>* Fantastic Trees</strong> (Decision Trees, Random Forest, Adaboost, Gradient Boosting DT, XGBoost)</a><br><img src="/2025/02/20/Table-of-Contents/tree-dog.png" alt="Droot (Dog Tree)"><br><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#tableofcontents">* Probabilistic Graphical Models Revision Notes</a></strong></p>
<ul>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#representations">Representations</a></strong><ul>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#bayesian_network">Bayesian Network (directed graph)</a></strong><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#defination">Defination</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#reasoning_patterns_in_bayesian_network">Reasoning Patterns in Bayesian Network</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#flow_of_probabilistic_influence">Flow of Probabilistic Influence (active trial)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#independencies">Independencies</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#d_seperation">d-seperation</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#i_maps">I-Maps (Indenpendency Map)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#factorisation_and_i_maps">Factorisation and I-Maps</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#naive_bayes">Naive Bayes</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#template_models">Template Models</a><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#temporal_models">Temporal Models (involve over time)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#2tbn">2 Time-Slice Bayesian Network (2TBN)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#plate_models">Plate Models</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#conditional_probability_distribution">Conditional Probability Distribution (CPD)</a><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#general_cpd">General CPD</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#table_based_cpd">Table-based CPD</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#context_specific_independence">Context-specific Independence</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#tree_structured_cpd">Tree-Structured CPD</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#multiplexer_cpd">Multiplexer CPD</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#noise_or_cpd">Noise OR CPD</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#sigmoid_cpd">Sigmoid CPD</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#continuous_variables">Continuous Variables</a></li>
</ul>
</li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#markov_network">Markov Network (undirected graph)</a></strong><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#markov_network_fundamentals">Markov Network Fundamentals</a><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#pairwise_markov_networks">Pairwise Markov Networks</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#general_gibbs_distribution">General Gibbs Distribution (a more general expression)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#induced_markov_network">Induced Markov Network (connects every pair of nodes that are in the same factor)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#factorization">Factorization</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#conditional_random_fields">Conditional Random Fields</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#independencies_in_markov_networks">Independencies in Markov Networks</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#local_structure_in_markov_networks">Local Structure in Markov Networks</a><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#log_linear_models">Log-linear Models (CRF, Ising Model, Metric MRFs)</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#decision_making">Decision Making</a><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#maxium_expected_utility">Maximum Expected Utility</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#utility_functions">Utility Functions</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#value_of_perfect_information">Value of Perfect Information</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#knowledge_engineering">Knowledge Engineering</a><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#generative_vs_descriminative">Generative vs. Discriminative</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#designing_a_graphical_model">Designing a graphical model (variable types)</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#structure">Structure</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#parameters_local_structure">Parameters: Local Structure</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#iterative_refinement">Iterative Refinement</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#inference">Inference</a></strong><ul>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#conditional_probability_queries">Conditional Probability Queries (Overview)</a></strong><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#sum_product_in_bayes_network_and_markov_network">Sum-Product in Bayes Network and Markov Network</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#evidence">Evidence: Reduced Factors</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#summary_of_sum_product_algorithm">Summary of Sum-Product Algorithm</a></li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#maximum_a_posterior">MAP (Maximum A Posterior) Inference (Overview)</a></strong><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#max_product">Max-Product</a></li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#variable_elimination">Variable Elimination</a></strong><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#variable_elimination_algorithm">Variable Elimination Algorithm</a><ul>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#elimination_in_chains">Elimination in Chains</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#elimination_in_complicated_bn">Elimination in a more complicated BN</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#variable_elimination_with_evidence">Variable Elimination with Evidence</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#variable_elimination_in_mns">Variable Elimination in MNs</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#summary_variable_elimination_algorithm">Summary Variable Elimination Algorithm</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#complexity_of_variable_elimination">Complexity of Variable Elimination</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#graph_based_perspective_on_variable_elimination">Graph-based Perspective on Variable Elimination</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#finding_elimination_ordering">Finding Elimination Orderings</a></li>
<li><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#variable_elimination_summary">Variable Elimination (Summary)</a></li>
</ul>
</li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/https://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#learning">Learning</a></strong><br><img src="/2025/02/20/Table-of-Contents/dog-pgm-mini.png" alt="The Power of Probabilistic Graphical Models"></li>
</ul>
<p><strong><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#tableofcontents">* Super Machine Learning Revision Notes</a></strong></p>
<ul>
<li><strong><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#activation_functions">Activation Functions</a></strong></li>
<li><strong><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#gradient_descent">Gradient Descent</a></strong><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#computation_graph">Computation Graph</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#backpropagation">Backpropagation</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#gradients_for_l2_regularization">Gradients for L2 Regularization (weight decay)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#vanishing_exploding_gradients">Vanishing/Exploding Gradients</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#mini_batch_gradient_descent">Mini-Batch Gradient Descent</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#stochastic_gradient_descent">Stochastic Gradient Descent</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#choosing_mini_batch_size">Choosing Mini-Batch Size</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#gradient_descent_with_momentum">Gradient Descent with Momentum (always faster than SGD)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#gradient_descent_with_rmsprop">Gradient Descent with RMSprop</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#adam">Adam (put Momentum and RMSprop together)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#learning_rate_decay_methods">Learning Rate Decay Methods</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#batch_normalization">Batch Normalization</a></li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#parameters">Parameters</a></strong><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#learnable_and_hyper_parameters">Learnable and Hyper Parameters</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#parameters_initialization">Parameters Initialization</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#hyper_parameter_tuning">Hyper Parameter Tuning</a></li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#regularization">Regularization</a></strong><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#l2_regularization">L2 Regularization (weight decay)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#l1_regularization">L1 Regularization</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#dropout">Dropout (inverted dropout)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#early_stopping">Early Stopping</a></li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#models">Models</a></strong><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#logistic-regression">Logistic Regression</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#multiclass_classification">Multi-Class Classification (Softmax Regression)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#transfer_learning">Transfer Learning</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#multitask_learning">Multi-task Learning</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#convolutional_neural_network">Convolutional Neural Network (CNN)</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#filter_kernel">Filter/Kernel</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#stride">Stride</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#padding">Padding (valid and same convolutions)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#a_convolutional_layer">A Convolutional Layer</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#1_1_convolution">1*1 Convolution</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#pooling_layer">Pooling Layer (Max and Average Pooling)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#lenet_5">LeNet-5</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#alexnet">AlexNet</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#vgg_16">VGG-16 </a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#resnet">ResNet (More Advanced and Powerful) </a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#inception_network">Inception Network </a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#object_detection">Object Detection </a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#classification_with_localisation">Classification with Localisation</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#landmark_detection">Landmark Detection</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#sliding_windows_detection_algorithm">Sliding Windows Detection Algorithm</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#region_proposal">Region Proposal (R-CNN)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#yolo_algorithm">YOLO Algorithm</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#bounding_box_predictions">Bounding Box Predictions (Basics of YOLO)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#intersection_over_union">Intersection Over Union</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#non_max_suppression">Non-max Suppression</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#anchor_boxes">Anchor Boxes</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#face_verification">Face Verification</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#one_shot_learning">One-Shot Learning (Learning a “similarity” function)</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#siamese_network">Siamese Network</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#triplet_loss">Triplet Loss</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#face_recognition_verification_and_binary_classification">Face Recognition/Verification and Binary Classification</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#neural_style_transfer">Neural Style Transfer </a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#sequence_models">Sequence Models</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#recurrent_neural_network">Recurrent Neural Network Model</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#gated_recurrent_unit">Gated Recurrent Unit (GRU)</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#gru_simplified">GRU (Simplified)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#gru_full">GRU (Full)</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#long_short_term_memory">Long Short Term Memory (LSTM)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#bidirectional_rnn">Bidirectional RNN</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#deep_rnn_example">Deep RNN Example</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#word_embedding">Word Embedding</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#one_hot">One-Hot</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#embedding_matrix">Embedding Matrix ($E$)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#learning_word_embedding">Learning Word Embedding</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#word2vec_and_skip_gram">Word2Vec & Skip-gram</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#negative_sampling">Negative Sampling</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#glove_vector">GloVe Vector</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#elmo">Deep Contextualized Word Representations (ELMo, Embeddings from Language Models)</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#sequence_to_sequence_model_example">Sequence to Sequence Model Example: Translation</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#pick_the_most_likely_sentence">Pick the most likely sentence (Beam Search)</a><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#beam_search">Beam Search</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#length_normalisation">Length Normalisation</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#error_analysis_in_beam_search">Error Analysis in Beam Search (heuristic search algorithm)</a></li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#bleu_score">Bleu Score</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#combined_bleu">Combined Bleu</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#attention_model">Attention Model</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#transformer">Transformer (Attention Is All You Need)</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#bert">Bidirectional Encoder Representations from Transformers (BERT)</a></li>
</ul>
</li>
<li><strong><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#tips">Practical Tips</a></strong><ul>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#train_dev_test">Train/Dev/Test Dataset</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#over_and_under_fitting">Over/UnderFitting, Bias/Variance, Comparing to Human-Level Performance, Solutions</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#mismatched_data_distribution">Mismatched Data Distribution</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#input_normalization">Input Normalization</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#single_number_model_evaluation_metric">Use a Single Number Model Evaluation Metric</a></li>
<li><a href="https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#error_analysis">Error Analysis (Prioritize Next Steps)</a></li>
</ul>
</li>
</ul>
<p><img src="/2025/02/20/Table-of-Contents/dog-dl.png" alt="Reviewing..."></p>
<p><strong>[2017] CRF Layer on the Top of BiLSTM (BiLSTM-CRF)</strong></p>
<ul>
<li><a href="https://createmomo.github.io/2017/09/12/CRF_Layer_on_the_Top_of_BiLSTM_1/">CRF Layer on the Top of BiLSTM - 1</a> Outline and Introduction</li>
<li><a href="https://createmomo.github.io/2017/09/23/CRF_Layer_on_the_Top_of_BiLSTM_2/">CRF Layer on the Top of BiLSTM - 2</a> CRF Layer (Emission and Transition Score)</li>
<li><a href="https://createmomo.github.io/2017/10/08/CRF-Layer-on-the-Top-of-BiLSTM-3/">CRF Layer on the Top of BiLSTM - 3</a> CRF Loss Function</li>
<li><a href="https://createmomo.github.io/2017/10/17/CRF-Layer-on-the-Top-of-BiLSTM-4/">CRF Layer on the Top of BiLSTM - 4</a> Real Path Score</li>
<li><a href="https://createmomo.github.io/2017/11/11/CRF-Layer-on-the-Top-of-BiLSTM-5/">CRF Layer on the Top of BiLSTM - 5</a> The Total Score of All the Paths</li>
<li><a href="https://createmomo.github.io/2017/11/24/CRF-Layer-on-the-Top-of-BiLSTM-6/">CRF Layer on the Top of BiLSTM - 6</a> Infer the Labels for a New Sentence</li>
<li><a href="https://createmomo.github.io/2017/12/06/CRF-Layer-on-the-Top-of-BiLSTM-7/">CRF Layer on the Top of BiLSTM - 7</a> Chainer Implementation Warm Up</li>
<li><a href="https://createmomo.github.io/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/">CRF Layer on the Top of BiLSTM - 8</a> Demo Code</li>
</ul>
<p><img src="/2025/02/20/Table-of-Contents/dog-mini.png" alt="The dog needs to find the best path to get his favorite bone toy and return home following the way he came"></p>
<hr>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2025/02/20/Table-of-Contents/" data-id="cm7elzvne000emgtjis7ntxs8" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2025/02/20/Table-of-Contents/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-Fantastic-Trees" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2021/04/05/Fantastic-Trees/" class="article-date">
<time datetime="2021-04-04T16:02:27.000Z" itemprop="datePublished">2021-04-05</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2021/04/05/Fantastic-Trees/">Fantastic Trees</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<hr>
<p>This note summarises the Youtube Videos published by Josh Starmer (Youtube Account: <a href="https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw" target="_blank" rel="external"><strong>StatQuest with Josh Starmer</strong></a>). I would like to say a big thank you to him and his super useful videos!</p>
<p><img src="/2021/04/05/Fantastic-Trees/tree-dog.png" alt="Droot (Dog Tree)"></p>
<p class="article-more-link">
<a href="/2021/04/05/Fantastic-Trees/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2021/04/05/Fantastic-Trees/" data-id="cm7elzvmq000amgtj3wh3r0tu" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2021/04/05/Fantastic-Trees/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-Main-Points-of-Interesting-Papers" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2020/04/06/Main-Points-of-Interesting-Papers/" class="article-date">
<time datetime="2020-04-05T16:07:00.000Z" itemprop="datePublished">2020-04-06</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2020/04/06/Main-Points-of-Interesting-Papers/">Main Points of Interesting Papers</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<hr>
<p>This page lists the <strong>notes of interesting papers</strong> at different research topics of <strong>Natural Language Processing (NLP)</strong>. Each note briefly describes the <strong>main points</strong> of each paper. Hope this would be helpful for you to quickly get the ideas of them. (Please be free to correct me if you found mistakes.)<br></p>
<p class="article-more-link">
<a href="/2020/04/06/Main-Points-of-Interesting-Papers/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2020/04/06/Main-Points-of-Interesting-Papers/" data-id="cm7elzvmq000bmgtjybkz9mcx" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2020/04/06/Main-Points-of-Interesting-Papers/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-Improving-Your-English-Communication-Skills" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2019/11/01/Improving-Your-English-Communication-Skills/" class="article-date">
<time datetime="2019-10-31T16:07:00.000Z" itemprop="datePublished">2019-11-01</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2019/11/01/Improving-Your-English-Communication-Skills/">Improving Your English Communication Skills</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<hr>
<p>This is the note of this online course, <a href="https://www.coursera.org/specializations/improve-english" target="_blank" rel="external">Improving Your English Communication Skills</a> on Coursera.<br></p>
<p class="article-more-link">
<a href="/2019/11/01/Improving-Your-English-Communication-Skills/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2019/11/01/Improving-Your-English-Communication-Skills/" data-id="cm7elzvnf000fmgtjq6utlb4z" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2019/11/01/Improving-Your-English-Communication-Skills/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-Probabilistic-Graphical-Models-Revision-Notes" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/" class="article-date">
<time datetime="2019-01-06T16:00:00.000Z" itemprop="datePublished">2019-01-07</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/">Probabilistic Graphical Models Revision Notes</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<h3 id="Last-Updated-2020-02-23"><a href="#Last-Updated-2020-02-23" class="headerlink" title="[Last Updated: 2020.02.23]"></a>[Last Updated: 2020.02.23]</h3><p>This note summarises the online course, <a href="https://www.coursera.org/specializations/probabilistic-graphical-models" target="_blank" rel="external">Probabilistic Graphical Models Specialization</a> on Coursera.<br><strong><strong>Any comments and suggestions are most welcome!</strong></strong><br></p>
<p class="article-more-link">
<a href="/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/" data-id="cm7elzvmz000dmgtjtflb5zsl" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-Super-Machine-Learning-Revision-Notes" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2018/01/23/Super-Machine-Learning-Revision-Notes/" class="article-date">
<time datetime="2018-01-22T16:00:00.000Z" itemprop="datePublished">2018-01-23</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2018/01/23/Super-Machine-Learning-Revision-Notes/">Super Machine Learning Revision Notes</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<h3 id="Last-Updated-06-01-2019"><a href="#Last-Updated-06-01-2019" class="headerlink" title="[Last Updated: 06/01/2019]"></a>[Last Updated: 06/01/2019]</h3><p>This article aims to summarise:</p>
<ul>
<li><strong>basic concepts</strong> in machine learning (e.g. gradient descent, back propagation etc.)</li>
<li><strong>different algorithms and various popular models</strong></li>
<li>some <strong>practical tips</strong> and <strong>examples</strong> were learned from my own practice and some online courses such as <a href="https://www.deeplearning.ai/" target="_blank" rel="external">Deep Learning AI</a>.</li>
</ul>
<p><strong>If you a student</strong> who is studying machine learning, hope this article could help you to shorten your revision time and bring you useful inspiration. <strong>If you are not a student</strong>, hope this article would be helpful when you cannot recall some models or algorithms.</p>
<p>Moreover, you can also treat it as a <strong>“Quick Check Guide”</strong>. Please be free to use Ctrl+F to search any key words interested you.</p>
<p><strong><strong>Any comments and suggestions are most welcome!</strong></strong><br></p>
<p class="article-more-link">
<a href="/2018/01/23/Super-Machine-Learning-Revision-Notes/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/" data-id="cm7elzvnf000gmgtjxqm2wr5q" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-My-Life" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2018/01/17/My-Life/" class="article-date">
<time datetime="2018-01-16T16:07:00.000Z" itemprop="datePublished">2018-01-17</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2018/01/17/My-Life/">My Life</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<hr>
<ul>
<li><strong>Reading for Learning English</strong><ul>
<li><em>[2017.07.25 -]</em> <strong><a href="https://www.amazon.com/Philip-C-Kolin-Successful-Writing/dp/B005E01154" target="_blank" rel="external">Successful Writing at Work, Ninth Edition</a></strong></li>
<li><em>[2017.09.27 -]</em> <strong><a href="https://geronimostilton.com/US-en/libri_top/scheda.php?id=747" target="_blank" rel="external">The Curse of the Cheese Pyramid</a> (Geronimo Stilton)</strong></li>
<li><em>[2016.12.17 - 2017.09.26]</em> <strong><a href="https://geronimostilton.com/US-en/libri_top/scheda.php?id=746" target="_blank" rel="external">Lost Treasure of the Emerald Eye</a> (Geronimo Stilton)</strong></li>
</ul>
</li>
<li><strong>Books</strong><ul>
<li><em>[2016.05.01 -]</em> <strong><a href="https://en.wikipedia.org/wiki/Love_in_the_Time_of_Cholera" target="_blank" rel="external">Love in the Time of Cholera</a></strong></li>
<li><em>[2015.02.24 - 2016.12.24]</em> <strong><a href="https://en.wikipedia.org/wiki/1Q84" target="_blank" rel="external">1Q84</a></strong></li>
<li><em>[2013.12.07 - 2015.04.10]</em> <strong><a href="https://www.amazon.com/gp/bookseries/B00YUQP6AE/ref=dp_st_0765382032" target="_blank" rel="external">The Three-Body Problem Series</a></strong></li>
</ul>
</li>
<li><strong>TV Series & Movies</strong><ul>
<li><em>[2018.03.02 - ]</em> <strong><a href="https://en.wikipedia.org/wiki/The_Big_Bang_Theory" target="_blank" rel="external">The Big Bang Theory</a></strong></li>
<li><em>[2018.01.27 - 2018.03.01]</em> <strong><a href="http://www.bbc.co.uk/programmes/b018ttws/episodes/guide" target="_blank" rel="external">Sherlock</a></strong></li>
<li><em>[2016.04.13 - 2018.01.26]</em> <strong><a href="https://en.wikipedia.org/wiki/Downton_Abbey" target="_blank" rel="external">Downton Abbey</a></strong></li>
<li><em>[2015.04.01 - 2017.05.26]</em> <strong><a href="https://en.wikipedia.org/wiki/The_Vampire_Diaries" target="_blank" rel="external">the Vampire Diaries</a></strong></li>
</ul>
</li>
<li><strong>Piano</strong><ul>
<li><em>[2016.09.01 - 2017.02.05]</em> <strong>OST :</strong> <strong><a href="https://youtu.be/wHt6dfwe8rs?t=10s" target="_blank" rel="external">Just One Time is Enough</a> (<a href="https://en.wikipedia.org/wiki/Aska_Yang" target="_blank" rel="external">Aska Yang</a>)</strong></li>
</ul>
</li>
<li><strong>Sports</strong> (<em>First Time</em>)<ul>
<li><em>[2017]</em> <strong>Skiing</strong></li>
<li><em>[2014]</em> <strong>Ice Skating</strong></li>
<li><em>[2007]</em> <strong>Swimming</strong></li>
</ul>
</li>
</ul>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2018/01/17/My-Life/" data-id="cm7elzvmz000cmgtjw0zmv0ns" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2018/01/17/My-Life/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-CRF-Layer-on-the-Top-of-BiLSTM-8" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/" class="article-date">
<time datetime="2017-12-07T14:17:20.000Z" itemprop="datePublished">2017-12-07</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/">CRF Layer on the Top of BiLSTM - 8</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<h4 id="3-4-Demo"><a href="#3-4-Demo" class="headerlink" title="3.4 Demo"></a>3.4 Demo</h4><p>In this section, we will make two fake sentences which only have 2 words and 1 word respectively. Moreover, we will also randomly generate their true answers. Finally, we will show how to train the CRF Layer by using Chainer v2.0. All the codes including the CRF layer are avaialbe from <a href="https://github.com/createmomo/CRF-Layer-on-the-Top-of-BiLSTM" target="_blank" rel="external">GitHub</a>.<br></p>
<p class="article-more-link">
<a href="/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/" data-id="cm7elzvmj0006mgtj78c7mjvx" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-CRF-Layer-on-the-Top-of-BiLSTM-7" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2017/12/06/CRF-Layer-on-the-Top-of-BiLSTM-7/" class="article-date">
<time datetime="2017-12-06T14:23:20.000Z" itemprop="datePublished">2017-12-06</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2017/12/06/CRF-Layer-on-the-Top-of-BiLSTM-7/">CRF Layer on the Top of BiLSTM - 7</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<h4 id="3-Chainer-Implementation"><a href="#3-Chainer-Implementation" class="headerlink" title="3 Chainer Implementation"></a>3 Chainer Implementation</h4><p>In this section, the structure of code will be explained. In addition, an important tip of implementing the CRF loss layer will also be given. Finally, the Chainer (version 2.0) implementation source code will be released in the next article.<br></p>
<p class="article-more-link">
<a href="/2017/12/06/CRF-Layer-on-the-Top-of-BiLSTM-7/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2017/12/06/CRF-Layer-on-the-Top-of-BiLSTM-7/" data-id="cm7elzvmm0007mgtj1rt1329g" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2017/12/06/CRF-Layer-on-the-Top-of-BiLSTM-7/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<article id="post-CRF-Layer-on-the-Top-of-BiLSTM-6" class="article article-type-post" itemscope itemprop="blogPost">
<div class="article-meta">
<a href="/2017/11/24/CRF-Layer-on-the-Top-of-BiLSTM-6/" class="article-date">
<time datetime="2017-11-24T15:45:44.000Z" itemprop="datePublished">2017-11-24</time>
</a>
</div>
<div class="article-inner">
<header class="article-header">
<h1 itemprop="name">
<a class="article-title" href="/2017/11/24/CRF-Layer-on-the-Top-of-BiLSTM-6/">CRF Layer on the Top of BiLSTM - 6</a>
</h1>
</header>
<div class="article-entry" itemprop="articleBody">
<h4 id="2-6-Infer-the-labels-for-a-new-sentence"><a href="#2-6-Infer-the-labels-for-a-new-sentence" class="headerlink" title="2.6 Infer the labels for a new sentence"></a>2.6 Infer the labels for a new sentence</h4><p>In the previous sections, we learned the structure of BiLSTM-CRF model and the details of CRF loss function. You can implement your own BiLSTM-CRF model by various opensource frameworks (Keras, Chainer, TensorFlow etc.). One of the greatest things is the backpropagation of on your model is automatically computed on these frameworks, therefore you do not need to implement the backpropagation by yourself to train your model (i.e. compute the gradients and to update parameters). Moreover, some frameworks have already implemented the CRF layer, so combining a CRF layer with your own model would be very easy by only adding about one line code.</p>
<p>In this section, we will explore how to infer the labels for a sentence during the test when our model is ready.<br></p>
<p class="article-more-link">
<a href="/2017/11/24/CRF-Layer-on-the-Top-of-BiLSTM-6/#more">Read More</a>
</p>
</div>
<footer class="article-footer">
<a data-url="http://createmomo.github.io/2017/11/24/CRF-Layer-on-the-Top-of-BiLSTM-6/" data-id="cm7elzvmf0005mgtj5691r4f8" class="article-share-link">Share</a>
<a href="http://createmomo.github.io/2017/11/24/CRF-Layer-on-the-Top-of-BiLSTM-6/#disqus_thread" class="article-comment-link">Comments</a>
</footer>
</div>
</article>
<nav id="page-nav">
<span class="page-number current">1</span><a class="page-number" href="/page/2/">2</a><a class="extend next" rel="next" href="/page/2/">__('next') »</a>
</nav>
</section>
<aside id="sidebar">
<div class="widget-wrap">
<h3 class="widget-title">Archives</h3>
<div class="widget">
<ul class="archive-list"><li class="archive-list-item"><a class="archive-list-link" href="/archives/2025/02/">February 2025</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2021/04/">April 2021</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2020/04/">April 2020</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2019/11/">November 2019</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2019/01/">January 2019</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2018/01/">January 2018</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2017/12/">December 2017</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2017/11/">November 2017</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2017/10/">October 2017</a></li><li class="archive-list-item"><a class="archive-list-link" href="/archives/2017/09/">September 2017</a></li></ul>
</div>
</div>
<div class="widget-wrap">
<h3 class="widget-title">Recent Posts</h3>
<div class="widget">
<ul>
<li>
<a href="/2025/02/20/Table-of-Contents/">Table of Contents</a>
</li>
<li>
<a href="/2021/04/05/Fantastic-Trees/">Fantastic Trees</a>
</li>
<li>
<a href="/2020/04/06/Main-Points-of-Interesting-Papers/">Main Points of Interesting Papers</a>
</li>
<li>
<a href="/2019/11/01/Improving-Your-English-Communication-Skills/">Improving Your English Communication Skills</a>
</li>
<li>
<a href="/2019/01/07/Probabilistic-Graphical-Models-Revision-Notes/">Probabilistic Graphical Models Revision Notes</a>
</li>
</ul>
</div>
</div>
</aside>
</div>
<footer id="footer">
<div class="outer">
<div id="footer-info" class="inner">
© 2025 CreateMoMo<br>
Powered by <a href="http://hexo.io/" target="_blank">Hexo</a>
</div>
</div>
</footer>
</div>
<nav id="mobile-nav">
<a href="/" class="mobile-nav-link">Home</a>
<a href="/archives" class="mobile-nav-link">Archives</a>
</nav>
<script>
var disqus_shortname = 'createmomo';
(function(){
var dsq = document.createElement('script');
dsq.type = 'text/javascript';
dsq.async = true;
dsq.src = '//' + disqus_shortname + '.disqus.com/count.js';
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
})();
</script>
<script src="//ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
<link rel="stylesheet" href="/fancybox/jquery.fancybox.css">
<script src="/fancybox/jquery.fancybox.pack.js"></script>
<script src="/js/script.js"></script>
</div>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$","$"], ["\\(","\\)"] ],
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre', 'code'],
processEscapes: true