forked from FFrankyy/FINDER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestReal.py
121 lines (103 loc) · 5.26 KB
/
testReal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import sys,os
sys.path.append(os.path.dirname(__file__) + os.sep + '../')
from FINDER import FINDER
import numpy as np
from tqdm import tqdm
import time
import networkx as nx
import pandas as pd
import pickle as cp
import random
def GetSolution(STEPRATIO, MODEL_FILE):
######################################################################################################################
##................................................Get Solution (model).....................................................
dqn = FINDER()
## data_test
data_test_path = '../data/real/Cost/'
# data_test_name = ['Crime', 'HI-II-14', 'Digg', 'Enron', 'Gnutella31', 'Epinions', 'Facebook', 'Youtube', 'Flickr']
data_test_name = ['Crime', 'HI-II-14']
data_test_costType = ['degree', 'random']
model_file = './FINDER_CN_cost/models/%s'%MODEL_FILE
## save_dir
save_dir = '../results/FINDER_CN_cost/real/'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
save_dir_degree = save_dir + '/Data_degree'
save_dir_random = save_dir + '/Data_random'
os.mkdir(save_dir_degree)
os.mkdir(save_dir_random)
## begin computing...
print('The best model is :%s' % (model_file))
dqn.LoadModel(model_file)
for costType in data_test_costType:
df = pd.DataFrame(np.arange(1 * len(data_test_name)).reshape((1, len(data_test_name))), index=['time'],
columns=data_test_name)
#################################### modify to choose which stepRatio to get the solution
stepRatio = STEPRATIO
for j in range(len(data_test_name)):
print('Testing dataset %s' % data_test_name[j])
data_test = data_test_path + data_test_name[j] + '_' + costType + '.gml'
if costType == 'degree':
solution, time = dqn.EvaluateRealData(model_file, data_test, save_dir_degree, stepRatio)
elif costType == 'random':
solution, time = dqn.EvaluateRealData(model_file, data_test, save_dir_random, stepRatio)
df.iloc[0, j] = time
if costType == 'degree':
save_dir_local = save_dir_degree + '/StepRatio_%.4f' % stepRatio
elif costType == 'random':
save_dir_local = save_dir_random + '/StepRatio_%.4f' % stepRatio
if not os.path.exists(save_dir_local):
os.mkdir(save_dir_local)
df.to_csv(save_dir_local + '/solution_%s_time.csv' % costType, encoding='utf-8', index=False)
print('model has been tested!')
def EvaluateSolution(STEPRATIO, STRTEGYID):
#######################################################################################################################
##................................................Evaluate
dqn = FINDER()
## data_test
data_test_path = '../data/real/Cost/'
# data_test_name = ['Crime', 'HI-II-14', 'Digg', 'Enron', 'Gnutella31', 'Epinions', 'Facebook', 'Youtube', 'Flickr']
data_test_name = ['Crime', 'HI-II-14']
data_test_costType = ['degree', 'random']
## save_dir
save_dir_degree = '../results/FINDER_CN_cost/real/Data_degree/StepRatio_%.4f/' % STEPRATIO
save_dir_random = '../results/FINDER_CN_cost/real/Data_random/StepRatio_%.4f/' % STEPRATIO
## begin computing...
for costType in data_test_costType:
df = pd.DataFrame(np.arange(2 * len(data_test_name)).reshape((2, len(data_test_name))),
index=['solution', 'time'], columns=data_test_name)
for i in range(len(data_test_name)):
print('Evaluating dataset %s' % data_test_name[i])
data_test = data_test_path + data_test_name[i] + '_' + costType + '.gml'
if costType == 'degree':
solution = save_dir_degree + data_test_name[i] + '_degree.txt'
elif costType == 'random':
solution = save_dir_random + data_test_name[i] + '_random.txt'
t1 = time.time()
# strategyID: 0:no insert; 1:count; 2:rank; 3:multiply
################################## modify to choose which strategy to evaluate
strategyID = STRTEGYID
score, MaxCCList, solution = dqn.EvaluateSol(data_test, solution, strategyID, reInsertStep=20)
t2 = time.time()
df.iloc[0, i] = score
df.iloc[1, i] = t2 - t1
if costType == 'degree':
result_file = save_dir_degree + '/MaxCCList__Strategy_' + data_test_name[i] + '.txt'
elif costType == 'random':
result_file = save_dir_random + '/MaxCCList_Strategy_' + data_test_name[i] + '.txt'
with open(result_file, 'w') as f_out:
for j in range(len(MaxCCList)):
f_out.write('%.8f\n' % MaxCCList[j])
print('Data:%s, score:%.6f!' % (data_test_name[i], score))
if costType == 'degree':
df.to_csv(save_dir_degree + '/solution_%s_score.csv' % (costType), encoding='utf-8', index=False)
elif costType == 'random':
df.to_csv(save_dir_random + '/solution_%s_score.csv' % (costType), encoding='utf-8', index=False)
def main():
model_file = 'nrange_30_50_iter_122100.ckpt'
GetSolution(0.01, model_file)
EvaluateSolution(0.01, 0)
if __name__=="__main__":
main()