-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdijkstra.py
206 lines (166 loc) · 5.47 KB
/
dijkstra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Implementation of Dijkstra shortest path
algorithm in python.
See https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.
"""
import sys
import math
from collections import defaultdict, namedtuple
import random
from heapq import heappush, heappop
from matplotlib import pyplot as plt
Node = namedtuple('Node', ['x', 'y', 'id', 'neighbours'])
def distance(a: Node, b: Node) -> float:
"""
returns squared euclidean distance between nodes a and b
"""
return math.sqrt((b.x - a.x) ** 2 + (b.y - a.y) ** 2)
def connect_nodes(a: Node, b: Node):
"""
Connects the nodes a and b.
"""
d = distance(a, b)
a.neighbours[b.id] = d
b.neighbours[a.id] = d
def generate_random_graph(
no_nodes: int, connect_probability: float = 0.5
) -> list[Node]:
"""
Generates a graph of nodes in the euclidean plane walking
from one node to the next and randomly connecting existing nodes.
"""
# sanity check on connect probability
connect_probability = max(0.0, min(abs(connect_probability), 1.0))
delta = 1.0 / no_nodes
sigma = 0.1
nodes: list[Node] = list()
while len(nodes) < no_nodes:
node_id = len(nodes)
if node_id == 0:
# starts lower left corner of our [0, 1]; [0, 1] bbox
x = random.uniform(0.0, 0.05)
y = random.uniform(0.0, 0.05)
else:
x = random.gauss(min(node_id * delta, 1.0), sigma)
y = random.gauss(min(node_id * delta, 1.0), sigma)
node = Node(
x=x,
y=y,
id=node_id,
neighbours=dict(),
)
if node_id > 0:
connect_nodes(node, nodes[-1])
if (
1 < node_id < no_nodes - 1
and random.uniform(0, 1.0) <= connect_probability
):
neighbour = random.choice(nodes[:-1])
connect_nodes(node, neighbour)
nodes.append(node)
return nodes
def plot_graph(
nodes: list[Node],
shortest: list[int] = None,
title: str = '',
filename='imgs/results.png',
show_edges=True,
):
"""
plots the graph using matplotlib
"""
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(title)
if show_edges:
edges = {tuple(sorted((n.id, x))) for n in nodes for x in n.neighbours}
for edge in edges:
from_node, to_node = [nodes[x] for x in edge]
x = [n.x for n in (from_node, to_node)]
y = [n.y for n in (from_node, to_node)]
ax.plot(x, y, color='gray', linewidth=0.5)
x, y = [n.x for n in nodes if n.neighbours], [
n.y for n in nodes if n.neighbours
]
ax.scatter(x, y, color='gray', s=10)
if shortest:
nodes_in_path = [nodes[idx] for idx in shortest]
x = [n.x for n in nodes_in_path]
y = [n.y for n in nodes_in_path]
ax.plot(x, y, color='green', linewidth=1)
start_node = nodes[shortest[0]]
ax.scatter(start_node.x, start_node.y, color='green', s=40)
on_path_nodes = [nodes[ids] for ids in shortest[1:-1]]
ax.scatter(
[n.x for n in on_path_nodes],
[n.y for n in on_path_nodes],
c=range(len(on_path_nodes)),
)
end_node = nodes[shortest[-1]]
ax.scatter(end_node.x, end_node.y, color='red', s=40)
ax.set_aspect('equal')
plt.savefig(filename, dpi=300)
def build_shortest_path(previous: dict, index: int, target: int) -> list[int]:
"""
builds the shortest path
traversing our previous dict
"""
res = [index, previous[index]]
index = previous[index]
while index != target:
index = previous[index]
res.append(index)
return res[::-1]
def dijkstra(nodes: list[Node], src_id: int, dst_id: int) -> list[int]:
"""
Computes the shortest path from source node to dst node
using Dijkstra algorithm.
"""
visited_nodes = set()
h: list[tuple[float, Node]] = []
previous = dict()
distances = defaultdict(lambda: sys.maxsize)
distances[src_id] = 0.0
heappush(h, (0.0, nodes[src_id]))
while h:
_, node = heappop(h)
if node.id in visited_nodes:
continue
dist = distances[node.id]
if node.id == dst_id:
return distances[dst_id], list(
build_shortest_path(previous, dst_id, src_id)
)
for n, d in (
(nodes[k], v)
for k, v in node.neighbours.items()
if k not in visited_nodes
):
new_dist = dist + d
if new_dist <= distances[n.id]:
distances[n.id] = new_dist
previous[n.id] = node.id
heappush(h, (new_dist, n))
visited_nodes.add(node.id)
return []
def validate_solution(nodes: list[Node], path: list[int]):
"""
Given a list of nodes and the list of indexes
of the shortest path, validates that the path exits
by walking from one node to the next.
"""
for idx, node in enumerate([nodes[k] for k in path[:-1]]):
if path[idx + 1] not in node.neighbours:
raise Exception(
f'next node {path[idx+1]} not in {node} neighbours'
)
if __name__ == '__main__':
g = generate_random_graph(1000, connect_probability=0.1)
src = g[0]
dst = g[-1]
c, d = dijkstra(g, src.id, dst.id)
validate_solution(g, d)
print(
f"shortest path from {src.id} to {dst.id} is {' -> '.join(str(x) for x in d)} with distance {c}"
)
plot_graph(g, d)