forked from princeton-nlp/SWE-agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
864 lines (770 loc) · 32.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
import config
import json
import logging
import os
import together
from collections import defaultdict
from anthropic import Anthropic, AnthropicBedrock, HUMAN_PROMPT, AI_PROMPT
from dataclasses import dataclass, fields
from openai import BadRequestError, OpenAI, AzureOpenAI
from simple_parsing.helpers.serialization.serializable import FrozenSerializable, Serializable
from sweagent.agent.commands import Command
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
retry_if_not_exception_type,
)
from typing import Optional, Union
logger = logging.getLogger("api_models")
@dataclass(frozen=True)
class ModelArguments(FrozenSerializable):
"""Arguments configuring the model and its behavior."""
model_name: str
per_instance_cost_limit: float = 0.0
total_cost_limit: float = 0.0
temperature: float = 1.0
top_p: float = 1.0
replay_path: str = None
host_url: str = "localhost:11434"
@dataclass
class APIStats(Serializable):
total_cost: float = 0
instance_cost: float = 0
tokens_sent: int = 0
tokens_received: int = 0
api_calls: int = 0
def __add__(self, other):
if not isinstance(other, APIStats):
raise TypeError("Can only add APIStats with APIStats")
return APIStats(**{
field.name: getattr(self, field.name) + getattr(other, field.name)
for field in fields(self)
})
def replace(self, other):
if not isinstance(other, APIStats):
raise TypeError("Can only replace APIStats with APIStats")
return APIStats(**{
field.name: getattr(other, field.name)
for field in fields(self)
})
class ContextWindowExceededError(Exception):
pass
class CostLimitExceededError(Exception):
pass
class BaseModel:
MODELS = {}
SHORTCUTS = {}
def __init__(self, args: ModelArguments, commands: list[Command]):
self.args = args
self.commands = commands
self.model_metadata = {}
self.stats = APIStats()
# Map `model_name` to API-compatible name `api_model`
self.api_model = (
self.SHORTCUTS[self.args.model_name]
if self.args.model_name in self.SHORTCUTS
else self.args.model_name
)
# Map model name to metadata (cost, context info)
MODELS = {
**{dest: self.MODELS[src] for dest, src in self.SHORTCUTS.items()},
**self.MODELS,
}
if args.model_name in MODELS:
self.model_metadata = MODELS[args.model_name]
elif args.model_name.startswith("ft:"):
ft_model = args.model_name.split(":")[1]
self.model_metadata = MODELS[ft_model]
elif args.model_name.startswith("ollama:"):
self.api_model = args.model_name.split('ollama:', 1)[1]
self.model_metadata = self.MODELS[self.api_model]
elif args.model_name.startswith("azure:"):
azure_model = args.model_name.split("azure:", 1)[1]
self.model_metadata = MODELS[azure_model]
elif args.model_name.startswith("bedrock:"):
self.api_model = args.model_name.split("bedrock:", 1)[1]
self.model_metadata = MODELS[self.api_model]
else:
raise ValueError(f"Unregistered model ({args.model_name}). Add model name to MODELS metadata to {self.__class__}")
def reset_stats(self, other: Optional[APIStats] = None):
if other is None:
self.stats = APIStats(total_cost=self.stats.total_cost)
logger.info("Resetting model stats")
else:
self.stats = other
def update_stats(self, input_tokens: int, output_tokens: int) -> float:
"""
Calculates the cost of a response from the openai API.
Args:
input_tokens (int): The number of tokens in the prompt.
output_tokens (int): The number of tokens in the response.
Returns:
float: The cost of the response.
"""
# Calculate cost and update cost related fields
cost = (
self.model_metadata["cost_per_input_token"] * input_tokens
+ self.model_metadata["cost_per_output_token"] * output_tokens
)
self.stats.total_cost += cost
self.stats.instance_cost += cost
self.stats.tokens_sent += input_tokens
self.stats.tokens_received += output_tokens
self.stats.api_calls += 1
# Log updated cost values to std. out.
logger.info(
f"input_tokens={input_tokens:_}, "
f"output_tokens={output_tokens:_}, "
f"instance_cost={self.stats.instance_cost:.2f}, "
f"cost={cost:.2f}"
)
logger.info(
f"total_tokens_sent={self.stats.tokens_sent:_}, "
f"total_tokens_received={self.stats.tokens_received:_}, "
f"total_cost={self.stats.total_cost:.2f}, "
f"total_api_calls={self.stats.api_calls:_}"
)
# Check whether total cost or instance cost limits have been exceeded
if 0 < self.args.total_cost_limit <= self.stats.total_cost:
logger.warning(
f"Cost {self.stats.total_cost:.2f} exceeds limit {self.args.total_cost_limit:.2f}"
)
raise CostLimitExceededError("Total cost limit exceeded")
if 0 < self.args.per_instance_cost_limit <= self.stats.instance_cost:
logger.warning(
f"Cost {self.stats.instance_cost:.2f} exceeds limit {self.args.per_instance_cost_limit:.2f}"
)
raise CostLimitExceededError("Instance cost limit exceeded")
return cost
def query(self, history: list[dict[str, str]]) -> str:
raise NotImplementedError("Use a subclass of BaseModel")
class OpenAIModel(BaseModel):
MODELS = {
"gpt-3.5-turbo-0125": {
"max_context": 16_385,
"cost_per_input_token": 5e-07,
"cost_per_output_token": 1.5e-06,
},
"gpt-3.5-turbo-1106": {
"max_context": 16_385,
"cost_per_input_token": 1.5e-06,
"cost_per_output_token": 2e-06,
},
"gpt-3.5-turbo-16k-0613": {
"max_context": 16_385,
"cost_per_input_token": 1.5e-06,
"cost_per_output_token": 2e-06,
},
"gpt-4-32k-0613": {
"max_context": 32_768,
"cost_per_input_token": 6e-05,
"cost_per_output_token": 0.00012,
},
"gpt-4-0613": {
"max_context": 8_192,
"cost_per_input_token": 3e-05,
"cost_per_output_token": 6e-05,
},
"gpt-4-1106-preview": {
"max_context": 128_000,
"cost_per_input_token": 1e-05,
"cost_per_output_token": 3e-05,
},
"gpt-4-0125-preview": {
"max_context": 128_000,
"cost_per_input_token": 1e-05,
"cost_per_output_token": 3e-05,
},
"gpt-4-turbo-2024-04-09": {
"max_context": 128_000,
"cost_per_input_token": 1e-05,
"cost_per_output_token": 3e-05,
},
"gpt-4o-2024-05-13": {
"max_context": 128_000,
"cost_per_input_token": 5e-06,
"cost_per_output_token": 15e-06,
},
}
SHORTCUTS = {
"gpt3": "gpt-3.5-turbo-1106",
"gpt3-legacy": "gpt-3.5-turbo-16k-0613",
"gpt4": "gpt-4-1106-preview",
"gpt4-legacy": "gpt-4-0613",
"gpt4-0125": "gpt-4-0125-preview",
"gpt3-0125": "gpt-3.5-turbo-0125",
"gpt4-turbo": "gpt-4-turbo-2024-04-09",
"gpt4o": "gpt-4o-2024-05-13",
}
def __init__(self, args: ModelArguments, commands: list[Command]):
super().__init__(args, commands)
# Set OpenAI key
cfg = config.Config(os.path.join(os.getcwd(), "keys.cfg"))
if self.args.model_name.startswith("azure"):
self.api_model = cfg["AZURE_OPENAI_DEPLOYMENT"]
self.client = AzureOpenAI(api_key=cfg["AZURE_OPENAI_API_KEY"], azure_endpoint=cfg["AZURE_OPENAI_ENDPOINT"], api_version=cfg.get("AZURE_OPENAI_API_VERSION", "2024-02-01"))
else:
api_base_url: Optional[str] = cfg.get("OPENAI_API_BASE_URL", None)
self.client = OpenAI(api_key=cfg["OPENAI_API_KEY"], base_url=api_base_url)
def history_to_messages(
self, history: list[dict[str, str]], is_demonstration: bool = False
) -> Union[str, list[dict[str, str]]]:
"""
Create `messages` by filtering out all keys except for role/content per `history` turn
"""
# Remove system messages if it is a demonstration
if is_demonstration:
history = [entry for entry in history if entry["role"] != "system"]
return '\n'.join([entry["content"] for entry in history])
# Return history components with just role, content fields
return [
{k: v for k, v in entry.items() if k in ["role", "content"]}
for entry in history
]
@retry(
wait=wait_random_exponential(min=1, max=15),
reraise=True,
stop=stop_after_attempt(3),
retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
"""
Query the OpenAI API with the given `history` and return the response.
"""
try:
# Perform OpenAI API call
response = self.client.chat.completions.create(
messages=self.history_to_messages(history),
model=self.api_model,
temperature=self.args.temperature,
top_p=self.args.top_p,
)
except BadRequestError:
raise CostLimitExceededError(f"Context window ({self.model_metadata['max_context']} tokens) exceeded")
# Calculate + update costs, return response
input_tokens = response.usage.prompt_tokens
output_tokens = response.usage.completion_tokens
self.update_stats(input_tokens, output_tokens)
return response.choices[0].message.content
class AnthropicModel(BaseModel):
MODELS = {
"claude-instant": {
"max_context": 100_000,
"cost_per_input_token": 1.63e-06,
"cost_per_output_token": 5.51e-06,
},
"claude-2.0": {
"max_context": 100_000,
"cost_per_input_token": 1.102e-05,
"cost_per_output_token": 3.268e-05,
},
"claude-2.1": {
"max_context": 100_000,
"cost_per_input_token": 1.102e-05,
"cost_per_output_token": 3.268e-05,
},
"claude-3-opus-20240229": {
"max_context": 200_000,
"max_tokens": 4096, # Max tokens to generate for Claude 3 models
"cost_per_input_token": 1.5e-05,
"cost_per_output_token": 7.5e-05,
},
"claude-3-sonnet-20240229": {
"max_context": 200_000,
"max_tokens": 4096,
"cost_per_input_token": 3e-06,
"cost_per_output_token": 1.5e-05,
},
"claude-3-haiku-20240307": {
"max_context": 200_000,
"max_tokens": 4096,
"cost_per_input_token": 2.5e-07,
"cost_per_output_token": 1.25e-06,
},
}
SHORTCUTS = {
"claude-2": "claude-2.1",
"claude-opus": "claude-3-opus-20240229",
"claude-sonnet": "claude-3-sonnet-20240229",
"claude-haiku": "claude-3-haiku-20240307",
}
def __init__(self, args: ModelArguments, commands: list[Command]):
super().__init__(args, commands)
# Set Anthropic key
cfg = config.Config(os.path.join(os.getcwd(), "keys.cfg"))
self.api = Anthropic(api_key=cfg["ANTHROPIC_API_KEY"])
def history_to_messages(
self, history: list[dict[str, str]], is_demonstration: bool = False
) -> Union[str, list[dict[str, str]]]:
"""
Create `prompt` by filtering out all keys except for role/content per `history` turn
Reference: https://docs.anthropic.com/claude/reference/complete_post
"""
return anthropic_history_to_messages(self, history, is_demonstration)
@retry(
wait=wait_random_exponential(min=1, max=15),
reraise=True,
stop=stop_after_attempt(3),
retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
"""
Query the Anthropic API with the given `history` and return the response.
"""
return anthropic_query(self, history)
class BedrockModel(BaseModel):
MODELS = {
"anthropic.claude-instant-v1": {
"max_context": 100_000,
"max_tokens_to_sample": 4096,
"cost_per_input_token": 8e-07,
"cost_per_output_token": 2.4e-06,
},
"anthropic.claude-v2": {
"max_context": 100_000,
"max_tokens_to_sample": 4096,
"cost_per_input_token": 8e-06,
"cost_per_output_token": 2.4e-05,
},
"anthropic.claude-v2:1": {
"max_context": 100_000,
"max_tokens": 4096,
"cost_per_input_token": 8e-06,
"cost_per_output_token": 2.4e-05,
},
"anthropic.claude-3-opus-20240229-v1:0": {
"max_context": 200_000,
"max_tokens": 4096,
"cost_per_input_token": 1.5e-05,
"cost_per_output_token": 7.5e-05,
},
"anthropic.claude-3-sonnet-20240229-v1:0": {
"max_context": 200_000,
"max_tokens": 4096,
"cost_per_input_token": 3e-06,
"cost_per_output_token": 1.5e-05,
},
"anthropic.claude-3-haiku-20240307-v1:0": {
"max_context": 200_000,
"max_tokens": 4096,
"cost_per_input_token": 2.5e-07,
"cost_per_output_token": 1.25e-06,
},
}
def __init__(self, args: ModelArguments, commands: list[Command]):
super().__init__(args, commands)
# Extract provider from model ID
# https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html
self.model_provider = self.api_model.split('.')[0]
if self.model_provider == "anthropic":
# Note: this assumes AWS credentials are already configured.
# https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
self.api = AnthropicBedrock()
elif self.model_provider in ["ai21", "amazon", "cohere", "meta", "mistral"]:
raise NotImplementedError(f"{self.api_model} is not supported!")
else:
raise ValueError(f"Provider {self.model_provider} is not supported by Amazon Bedrock!")
def history_to_messages(
self, history: list[dict[str, str]], is_demonstration: bool = False
) -> Union[str, list[dict[str, str]]]:
"""
Create `prompt` from the history of messages
"""
if self.model_provider == "anthropic":
return anthropic_history_to_messages(self, history, is_demonstration)
else:
raise NotImplementedError(f"{self.api_model} is not supported!")
@retry(
wait=wait_random_exponential(min=1, max=15),
reraise=True,
stop=stop_after_attempt(3),
retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
"""
Query Amazon Bedrock with the given `history` and return the response.
"""
if self.model_provider == "anthropic":
return anthropic_query(self, history)
else:
raise NotImplementedError(f"{self.api_model} is not supported!")
def anthropic_history_to_messages(
model: Union[AnthropicModel, BedrockModel], history: list[dict[str, str]], is_demonstration: bool = False
) -> Union[str, list[dict[str, str]]]:
"""
Create `prompt` by filtering out all keys except for role/content per `history` turn
Reference: https://docs.anthropic.com/claude/reference/complete_post
"""
# Preserve behavior for older models
if model.api_model in ["claude-instant", "claude-2.0"] or \
(isinstance(model, BedrockModel) and model.api_model in ["anthropic.claude-instant-v1", "anthropic.claude-v2"]):
# Remove system messages if it is a demonstration
if is_demonstration:
history = [entry for entry in history if entry["role"] != "system"]
# Map history to Claude format
prompt = "\n\n"
for entry in history:
if entry["role"] in {"user", "system"}:
prompt += f'{HUMAN_PROMPT} {entry["content"]}\n\n'
elif entry["role"] == "assistant":
prompt += f'{AI_PROMPT} {entry["content"]}\n\n'
prompt += AI_PROMPT
return prompt
# Remove system messages if it is a demonstration
if is_demonstration:
history = [entry for entry in history if entry["role"] != "system"]
return '\n'.join([entry["content"] for entry in history])
# Return history components with just role, content fields (no system message)
messages = [
{
k: v for k, v in entry.items()
if k in ["role", "content"]
}
for entry in history if entry["role"] != "system"
]
compiled_messages = [] # Combine messages from the same role
last_role = None
for message in reversed(messages):
if last_role == message["role"]:
compiled_messages[-1]["content"] = message["content"] + "\n" + compiled_messages[-1]["content"]
else:
compiled_messages.append(message)
last_role = message["role"]
compiled_messages = list(reversed(compiled_messages))
# Replace any empty content values with a "(No output)"
for message in compiled_messages:
if message["content"].strip() == "":
message["content"] = "(No output)"
return compiled_messages
def anthropic_query(model: Union[AnthropicModel, BedrockModel], history: list[dict[str, str]]) -> str:
"""
Query the Anthropic API with the given `history` and return the response.
"""
# Preserve behavior for older models
if model.api_model in ["claude-instant", "claude-2.0", "claude-2.1"] or \
(isinstance(model, BedrockModel) and model.api_model in ["anthropic.claude-instant-v1", "anthropic.claude-v2"]):
# Perform Anthropic API call
prompt = anthropic_history_to_messages(model, history)
if isinstance(model, BedrockModel):
# Use a dummy Anthropic client since count_tokens
# is not available in AnthropicBedrock
# https://github.com/anthropics/anthropic-sdk-python/issues/353
input_tokens = Anthropic().count_tokens(prompt)
else:
input_tokens = model.api.count_tokens(prompt)
completion = model.api.completions.create(
model=model.api_model,
prompt=prompt,
max_tokens_to_sample=model.model_metadata["max_context"] - input_tokens if isinstance(model, Anthropic) else model.model_metadata["max_tokens_to_sample"],
temperature=model.args.temperature,
top_p=model.args.top_p,
)
# Calculate + update costs, return response
response = completion.completion
if isinstance(model, BedrockModel):
output_tokens = Anthropic().count_tokens(response)
else:
output_tokens = model.api.count_tokens(response)
model.update_stats(input_tokens, output_tokens)
return response
# Get system message(s)
system_message = "\n".join([
entry["content"] for entry in history if entry["role"] == "system"
])
messages = anthropic_history_to_messages(model, history)
# Perform Anthropic API call
response = model.api.messages.create(
messages=messages,
max_tokens=model.model_metadata["max_tokens"],
model=model.api_model,
temperature=model.args.temperature,
top_p=model.args.top_p,
system=system_message,
)
# Calculate + update costs, return response
model.update_stats(
response.usage.input_tokens,
response.usage.output_tokens
)
response = "\n".join([x.text for x in response.content])
return response
class OllamaModel(BaseModel):
MODELS = defaultdict(lambda: {
"max_context": 128_000,
"cost_per_input_token": 0,
"cost_per_output_token": 0,
})
def __init__(self, args: ModelArguments, commands: list[Command]):
super().__init__(args, commands)
from ollama import Client
self.client = Client(host=args.host_url)
def history_to_messages(
self, history: list[dict[str, str]], is_demonstration: bool = False
) -> Union[str, list[dict[str, str]]]:
"""
Create `messages` by filtering out all keys except for role/content per `history` turn
"""
# Remove system messages if it is a demonstration
if is_demonstration:
history = [entry for entry in history if entry["role"] != "system"]
return '\n'.join([entry["content"] for entry in history])
# Return history components with just role, content fields
return [
{k: v for k, v in entry.items() if k in ["role", "content"]}
for entry in history
]
@retry(
wait=wait_random_exponential(min=1, max=15),
reraise=True,
stop=stop_after_attempt(3),
retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
"""
Query the Ollama API with the given `history` and return the response.
"""
response = self.client.chat(
model=self.api_model,
messages=self.history_to_messages(history),
options={
"temperature": self.args.temperature,
"top_p": self.args.top_p,
}
)
# Calculate + update costs, return response
if "prompt_eval_count" in response:
input_tokens = response["prompt_eval_count"]
else:
logger.warning(
"Prompt eval count not found in response. Using 0. "
"This might be because the prompt has been cached. "
"See https://github.com/princeton-nlp/SWE-agent/issues/44 "
"and https://github.com/ollama/ollama/issues/3427."
)
input_tokens = 0
output_tokens = response["eval_count"]
self.update_stats(input_tokens, output_tokens)
return response["message"]["content"]
class TogetherModel(BaseModel):
# Check https://docs.together.ai/docs/inference-models for model names, context
# Check https://www.together.ai/pricing for pricing
MODELS = {
"meta-llama/Llama-2-13b-chat-hf": {
"max_context": 4096,
"cost_per_input_token": 2.25e-07,
"cost_per_output_token": 2.25e-07,
},
"meta-llama/Llama-2-70b-chat-hf": {
"max_context": 4096,
"cost_per_input_token": 9e-07,
"cost_per_output_token": 9e-07,
},
"mistralai/Mistral-7B-Instruct-v0.2": {
"max_context": 32768,
"cost_per_input_token": 2e-07,
"cost_per_output_token": 2e-07,
},
"togethercomputer/RedPajama-INCITE-7B-Chat": {
"max_context": 2048,
"cost_per_input_token": 2e-07,
"cost_per_output_token": 2e-07,
},
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
"max_context": 32768,
"cost_per_input_token": 6e-07,
"cost_per_output_token": 6e-07,
},
}
SHORTCUTS = {
"llama13b": "meta-llama/Llama-2-13b-chat-hf",
"llama70b": "meta-llama/Llama-2-70b-chat-hf",
"mistral7b": "mistralai/Mistral-7B-Instruct-v0.2",
"mixtral8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"redpajama7b": "togethercomputer/RedPajama-INCITE-7B-Chat",
}
def __init__(self, args: ModelArguments, commands: list[Command]):
super().__init__(args, commands)
assert together.version >= '1.1.0', "Please upgrade to Together SDK v1.1.0 or later."
# Set Together key
cfg = config.Config(os.path.join(os.getcwd(), "keys.cfg"))
together.api_key = cfg.TOGETHER_API_KEY
def history_to_messages(
self, history: list[dict[str, str]], is_demonstration: bool = False
) -> str:
"""
Create `prompt` by filtering out all keys except for role/content per `history` turn
"""
# Remove system messages if it is a demonstration
if is_demonstration:
history = [entry for entry in history if entry["role"] != "system"]
# Map history to TogetherAI format
mapping = {"user": "human", "assistant": "bot", "system": "bot"}
prompt = [f'<{mapping[d["role"]]}>: {d["content"]}' for d in history]
prompt = "\n".join(prompt)
prompt = f"{prompt}\n<bot>:"
return prompt
@retry(
wait=wait_random_exponential(min=1, max=15),
reraise=True,
stop=stop_after_attempt(3),
retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
"""
Query the Together API with the given `history` and return the response.
"""
# Perform Together API call
prompt = self.history_to_messages(history)
# Anthropic's count_tokens is convenient because it caches and utilizes huggingface/tokenizers, so we will use.
max_tokens_to_sample = self.model_metadata["max_context"] - Anthropic().count_tokens(prompt)
completion = together.Complete.create(
model=self.api_model,
prompt=prompt,
max_tokens=max_tokens_to_sample,
stop=["<human>"],
temperature=self.args.temperature,
top_p=self.args.top_p,
)
# Calculate + update costs, return response
response = completion["choices"][0]["text"].split("<human>")[0]
input_tokens = completion["usage"]["prompt_tokens"]
output_tokens = completion["usage"]["completion_tokens"]
self.update_stats(input_tokens, output_tokens)
return response
class HumanModel(BaseModel):
MODELS = {"human": {}}
def __init__(self, args: ModelArguments, commands: list[Command]):
super().__init__(args, commands)
# Determine which commands require multi-line input
self.multi_line_command_endings = {
command.name: command.end_name
for command in commands
if command.end_name is not None
}
def history_to_messages(
self, history: list[dict[str, str]], is_demonstration: bool = False
) -> Union[str, list[dict[str, str]]]:
"""
Create `messages` by filtering out all keys except for role/content per `history` turn
"""
# Remove system messages if it is a demonstration
if is_demonstration:
history = [entry for entry in history if entry["role"] != "system"]
return '\n'.join([entry["content"] for entry in history])
# Return history components with just role, content fields
return [
{k: v for k, v in entry.items() if k in ["role", "content"]}
for entry in history
]
def query(self, history: list[dict[str, str]], action_prompt: str = "> ") -> str:
"""
Logic for handling user input to pass to SWEEnv
"""
action = input(action_prompt)
command_name = action.split()[0] if action else ""
# Special handling for multi-line input actions (i.e. edit)
if command_name in self.multi_line_command_endings:
buffer = [action]
end_keyword = self.multi_line_command_endings[command_name]
while True:
action = input("... ")
buffer.append(action)
if action.rstrip() == end_keyword:
# Continue reading input until terminating keyword inputted
break
action = "\n".join(buffer)
elif action.strip() == "start_multiline_command": # do arbitrary multi-line input
buffer = []
while True:
action = input("... ")
if action.rstrip() == "end_multiline_command":
break
buffer.append(action)
action = "\n".join(buffer)
return action
class HumanThoughtModel(HumanModel):
MODELS = {"human_thought": {}}
def query(self, history: list[dict[str, str]]) -> str:
"""
Logic for handling user input (both thought + action) to pass to SWEEnv
"""
thought_all = ""
thought = input("Thought (end w/ END_THOUGHT): ")
while True:
if "END_THOUGHT" in thought:
thought = thought.split("END_THOUGHT")[0]
thought_all += thought
break
thought_all += thought
thought = input("... ")
action = super().query(history, action_prompt="Action: ")
return f"{thought_all}\n```\n{action}\n```"
class ReplayModel(BaseModel):
MODELS = {"replay": {}}
def __init__(self, args: ModelArguments, commands: list[Command]):
super().__init__(args, commands)
if self.args.replay_path is None or not os.path.exists(self.args.replay_path):
raise ValueError(
"--replay_path must point to a file that exists to run a replay policy"
)
self.replays = [
list(json.loads(x).values())[0]
for x in open(self.args.replay_path, "r").readlines()
]
self.replay_idx = 0
self.action_idx = 0
def query(self, history: list[dict[str, str]]) -> str:
"""
Logic for tracking which replay action to pass to SWEEnv
"""
action = self.replays[self.replay_idx][self.action_idx]
self.action_idx += 1
# Assuming `submit` is always last action of replay trajectory
if action == "submit":
self.replay_idx += 1
self.action_idx = 0
return action
class InstantEmptySubmitTestModel(BaseModel):
MODELS = {"instant_empty_submit": {}}
def __init__(self, args: ModelArguments, commands: list[Command]):
"""This model immediately submits. Useful for testing purposes"""
super().__init__(args, commands)
self._action_idx = 0
def query(self, history: list[dict[str, str]]) -> str:
# Need to at least do _something_ to submit
if self._action_idx == 0:
self._action_idx = 1
action = "DISCUSSION\nLet's reproduce the bug by creating a `reproduce.py` file.\n\n```\ncreate reproduce.py\n```\n"
elif self._action_idx == 1:
self._action_idx = 0
action = "DISCUSSION\nThe task should be resolved, so let's submit the patch.\n\n```\nsubmit\n```\n"
return action
def get_model(args: ModelArguments, commands: Optional[list[Command]] = None):
"""
Returns correct model object given arguments and commands
"""
if commands is None:
commands = []
if args.model_name == "instant_empty_submit":
return InstantEmptySubmitTestModel(args, commands)
if args.model_name == "human":
return HumanModel(args, commands)
if args.model_name == "human_thought":
return HumanThoughtModel(args, commands)
if args.model_name == "replay":
return ReplayModel(args, commands)
elif args.model_name.startswith("gpt") or args.model_name.startswith("ft:gpt") or args.model_name.startswith("azure:gpt"):
return OpenAIModel(args, commands)
elif args.model_name.startswith("claude"):
return AnthropicModel(args, commands)
elif args.model_name.startswith("bedrock"):
return BedrockModel(args, commands)
elif args.model_name.startswith("ollama"):
return OllamaModel(args, commands)
elif args.model_name in TogetherModel.SHORTCUTS:
return TogetherModel(args, commands)
elif args.model_name == "instant_empty_submit":
return InstantEmptySubmitTestModel(args, commands)
else:
raise ValueError(f"Invalid model name: {args.model_name}")