This repository was archived by the owner on Feb 24, 2022. It is now read-only.
forked from facebookresearch/TransCoder
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtranslate.py
executable file
·234 lines (192 loc) · 9.46 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2019-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# Translate sentences from the input stream.
# The model will be faster is sentences are sorted by length.
# Input sentences must have the same tokenization and BPE codes than the ones used in the model.
#
# Usage:
# python translate.py
# --src_lang cpp --tgt_lang java \
# --model_path trained_model.pth < input_code.cpp
#
import argparse
import os
import sys
from tqdm import tqdm
import fastBPE
import torch
import preprocessing.src.code_tokenizer as code_tokenizer
from XLM.src.data.dictionary import Dictionary, BOS_WORD, EOS_WORD, PAD_WORD, UNK_WORD, MASK_WORD
from XLM.src.model import build_model
from XLM.src.utils import AttrDict
SUPPORTED_LANGUAGES = ['cpp', 'java', 'python']
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description="Translate sentences")
# model
parser.add_argument("--model_path", type=str,
default="", help="Model path")
parser.add_argument("--src_lang", type=str, default="",
help=f"Source language, should be either {', '.join(SUPPORTED_LANGUAGES[:-1])} or {SUPPORTED_LANGUAGES[-1]}")
parser.add_argument("--tgt_lang", type=str, default="",
help=f"Target language, should be either {', '.join(SUPPORTED_LANGUAGES[:-1])} or {SUPPORTED_LANGUAGES[-1]}")
parser.add_argument("--BPE_path", type=str,
default="data/BPE_with_comments_codes", help="Path to BPE codes.")
parser.add_argument("--beam_size", type=int, default=1,
help="Beam size. The beams will be printed in order of decreasing likelihood.")
parser.add_argument("--json_path", type=str, default="/media/amllab-2070/Research/Code Translation/Code_Transformation/content/csn_python_final/csn_python_1.json",
help="Beam size. The beams will be printed in order of decreasing likelihood.")
return parser
class Translator:
def __init__(self, params):
reloaded = torch.load(params.model_path, map_location='cpu')
reloaded['encoder'] = {(k[len('module.'):] if k.startswith('module.') else k): v for k, v in
reloaded['encoder'].items()}
assert 'decoder' in reloaded or (
'decoder_0' in reloaded and 'decoder_1' in reloaded)
if 'decoder' in reloaded:
decoders_names = ['decoder']
else:
decoders_names = ['decoder_0', 'decoder_1']
for decoder_name in decoders_names:
reloaded[decoder_name] = {(k[len('module.'):] if k.startswith('module.') else k): v for k, v in
reloaded[decoder_name].items()}
self.reloaded_params = AttrDict(reloaded['params'])
# build dictionary / update parameters
self.dico = Dictionary(
reloaded['dico_id2word'], reloaded['dico_word2id'], reloaded['dico_counts'])
assert self.reloaded_params.n_words == len(self.dico)
assert self.reloaded_params.bos_index == self.dico.index(BOS_WORD)
assert self.reloaded_params.eos_index == self.dico.index(EOS_WORD)
assert self.reloaded_params.pad_index == self.dico.index(PAD_WORD)
assert self.reloaded_params.unk_index == self.dico.index(UNK_WORD)
assert self.reloaded_params.mask_index == self.dico.index(MASK_WORD)
# build model / reload weights
self.reloaded_params['reload_model'] = ','.join([params.model_path] * 2)
encoder, decoder = build_model(self.reloaded_params, self.dico)
self.encoder = encoder[0]
self.encoder.load_state_dict(reloaded['encoder'])
assert len(reloaded['encoder'].keys()) == len(
list(p for p, _ in self.encoder.state_dict().items()))
self.decoder = decoder[0]
self.decoder.load_state_dict(reloaded['decoder'])
assert len(reloaded['decoder'].keys()) == len(
list(p for p, _ in self.decoder.state_dict().items()))
self.encoder.cuda()
self.decoder.cuda()
self.encoder.eval()
self.decoder.eval()
self.bpe_model = fastBPE.fastBPE(os.path.abspath(params.BPE_path))
def translate(self, input, lang1, lang2, n=1, beam_size=1, sample_temperature=None, device='cuda:0'):
with torch.no_grad():
assert lang1 in {'python', 'java', 'cpp'}, lang1
assert lang2 in {'python', 'java', 'cpp'}, lang2
DEVICE = device
tokenizer = getattr(code_tokenizer, f'tokenize_{lang1}')
detokenizer = getattr(code_tokenizer, f'detokenize_{lang2}')
lang1 += '_sa'
lang2 += '_sa'
lang1_id = self.reloaded_params.lang2id[lang1]
lang2_id = self.reloaded_params.lang2id[lang2]
tokens = [t for t in tokenizer(input)]
tokens = self.bpe_model.apply(tokens)
#if len(tokens)>500:
# tokens = tokens[:500]
# truncated = True
tokens = ['</s>'] + tokens + ['</s>']
input = " ".join(tokens)
truncated = False
if len(input.split())>512:
input = " ".join(input.split()[:512])
truncated = True
# create batch
len1 = len(input.split(" "))
x1 = torch.LongTensor([self.dico.index(w)
for w in input.split()]).to(DEVICE)[:, None]
len1 = x1.shape[0]
len1 = torch.LongTensor(1).fill_(len1).to(DEVICE)
langs1 = x1.clone().fill_(lang1_id)
enc1 = self.encoder('fwd', x=x1, lengths=len1,
langs=langs1, causal=False)
enc1 = enc1.transpose(0, 1)
if n > 1:
enc1 = enc1.repeat(n, 1, 1)
len1 = len1.expand(n)
if beam_size == 1:
#print("3* len1.max().item() = ", 3 * len1.max().item())
#print("max len decoder", min(self.reloaded_params.max_len.to(DEVICE), 3 * len1.max().item() + 10))
x2, len2 = self.decoder.generate(enc1, len1, lang2_id,
max_len=int(min(self.reloaded_params.max_len, 3 * len1.max().item() + 10)),
sample_temperature=sample_temperature)
else:
x2, len2 = self.decoder.generate_beam(enc1, len1, lang2_id,
max_len=int(
min(self.reloaded_params.max_len, 3 * len1.max().item() + 10)),
early_stopping=False, length_penalty=1.0, beam_size=beam_size)
tok = []
for i in range(x2.shape[1]):
wid = [self.dico[x2[j, i].item()] for j in range(len(x2))][1:]
wid = wid[:wid.index(EOS_WORD)] if EOS_WORD in wid else wid
tok.append(" ".join(wid).replace("@@ ", ""))
results = []
for t in tok:
results.append(detokenizer(t))
return results, truncated
if __name__ == '__main__':
# generate parser / parse parameters
parser = get_parser()
params = parser.parse_args()
# check parameters
assert os.path.isfile(
params.model_path), f"The path to the model checkpoint is incorrect: {params.model_path}"
assert os.path.isfile(
params.json_path), f"The path to the json file incorrect: {params.model_path}"
assert os.path.isfile(
params.BPE_path), f"The path to the BPE tokens is incorrect: {params.BPE_path}"
assert params.src_lang in SUPPORTED_LANGUAGES, f"The source language should be in {SUPPORTED_LANGUAGES}."
assert params.tgt_lang in SUPPORTED_LANGUAGES, f"The target language should be in {SUPPORTED_LANGUAGES}."
# Initialize translator
translator = Translator(params)
# read input code from stdin
src_sent = []
#input = sys.stdin.read().strip()
#print(input)
import datetime
import json
with open(params.json_path, 'r') as js_file:
all_data = json.load(js_file)
out_data = []
chunk_count = 0
folder_path = params.json_path.split("/")[-1][:-5]
if not os.path.exists(params.json_path.split("/")[-1][:-5]):
print("Created folder ->", folder_path)
os.makedirs(folder_path)
with torch.no_grad():
for data in tqdm(all_data):
d = data
#start_time = datetime.datetime.now()
output, truncated = translator.translate(
d['code'].strip(), lang1=params.src_lang, lang2=params.tgt_lang, beam_size=params.beam_size)
#print(datetime.datetime.now() - start_time)
d['transcoder_output'] = output
d['truncated'] = truncated
out_data.append(d)
#print(output)
#print(" ")
if len(out_data)>=1000:
chunk_count+=1
with open(folder_path+'/'+params.json_path.split("/")[-1].replace('python', 'converted_java_chunk_{}'.format(str(chunk_count))), 'w') as f:
json.dump(out_data, f)
out_data.clear()
'''
for out in output:
print("=" * 20)
print(out)
'''