-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRml.v
906 lines (744 loc) · 22.2 KB
/
Rml.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
From mathcomp Require Import all_ssreflect all_algebra.
From mathcomp.analysis Require Import boolp reals distr.
Require Import Util.
Require Import Coq.Logic.Eqdep_dec.
(* Require Import Eqdep_dec. *)
Axiom dec_eq : (forall x y : Type, {x = y} + {x <> y}).
(* -------------------------------------------------------------------------------- *)
Inductive Rml :=
| Var : (nat * Type) -> bool -> Rml (* bool = is fun var *)
| Const : forall {A : Type}, A -> Rml
| Let_stm : (nat * Type) -> Rml -> Rml -> Rml
| If_stm : Rml -> Rml -> Rml -> Rml
| App_stm : Type -> Rml -> Rml -> Rml
| Let_rec : Type -> Type -> nat -> nat -> Rml -> Rml -> Rml
| Random : Rml -> Rml
| Flip : Rml.
(* -------------------------------------------------------------------------------- *)
Inductive rml_valid_type : Type -> seq (nat * Type) -> seq (nat * Type) -> Rml -> Prop :=
| valid_var : forall vl fl p,
List.In p vl ->
rml_valid_type p.2 vl fl (Var p false)
| valid_fun_var : forall vl fl p,
List.In p fl ->
rml_valid_type p.2 vl fl (Var p true)
| valid_const : forall (A : Type) vl fl (c : A),
rml_valid_type A vl fl (@Const A c)
| valid_let : forall A vl fl p a b,
@rml_valid_type p.2 vl fl a ->
@rml_valid_type A (p :: vl) fl b ->
rml_valid_type A vl fl (Let_stm p a b)
| valid_if : forall A vl fl b m1 m2,
rml_valid_type bool vl fl b ->
rml_valid_type A vl fl m1 ->
rml_valid_type A vl fl m2 ->
rml_valid_type A vl fl (If_stm b m1 m2)
| valid_app : forall A vl fl (B : Type) e1 e2,
rml_valid_type (B -> A) vl fl e1 ->
rml_valid_type B vl fl e2 ->
rml_valid_type A vl fl (App_stm B e1 e2)
| valid_let_rec : forall A vl fl B nf nx e1 e2,
@rml_valid_type A vl ((nx,B) :: (nf,B -> A) :: fl) e1 ->
@rml_valid_type B vl fl e2 ->
rml_valid_type A vl fl (Let_rec B A nf nx e1 e2)
| valid_random : forall vl fl e,
rml_valid_type nat vl fl e ->
rml_valid_type nat vl fl (Random e)
| valid_flip : forall vl fl,
rml_valid_type bool vl fl Flip.
(** * Simple Rml *)
(* -------------------------------------------------------------------------------- *)
Inductive sRml {A : Type} :=
| sVar : nat -> sRml
| sConst : A -> sRml
| sIf : @sRml bool -> sRml -> sRml -> sRml
| sApp : forall T, @sRml (T -> A) -> @sRml T -> sRml
| sFix : forall B (nf nx : nat), @sRml A -> @sRml B -> sRml
| sRandom : (A = nat) -> @sRml nat -> sRml
| sFlip : (A = bool) -> sRml.
(* -------------------------------------------------------------------------------- *)
Inductive rml_is_simple {l : seq (nat * Type)} : Rml -> Prop :=
| is_fun_var : forall (p : nat * Type),
List.In p l ->
rml_is_simple (Var p true)
| is_const : forall (A : Type) c,
rml_is_simple (@Const A c)
| is_if : forall b m1 m2,
rml_is_simple b ->
rml_is_simple m1 ->
rml_is_simple m2 ->
rml_is_simple (@If_stm b m1 m2)
| is_app : forall (B : Type) e1 e2,
rml_is_simple e1 ->
rml_is_simple e2 ->
rml_is_simple (@App_stm B e1 e2)
| is_fix : forall B C nf nx e1 e2,
@rml_is_simple [:: (nx,B), (nf,B -> C) & l] e1 ->
@rml_is_simple l e2 ->
rml_is_simple (@Let_rec B C nf nx e1 e2)
| is_random : forall e,
rml_is_simple e ->
rml_is_simple (Random e)
| is_flip :
rml_is_simple Flip.
(* -------------------------------------------------------------------------------- *)
Fixpoint sRml_to_rml {A} (x : @sRml A) : Rml :=
match x with
| sVar n => Var (n,A) true
| sConst c => @Const A c
| sIf b m1 m2 => If_stm (sRml_to_rml b) (sRml_to_rml m1) (sRml_to_rml m2)
| sApp T e1 e2 => App_stm T (sRml_to_rml e1) (sRml_to_rml e2)
| sFix B nf nx f x =>
Let_rec B A nf nx
(sRml_to_rml f)
(sRml_to_rml x)
| sRandom A e => Random (sRml_to_rml e)
| sFlip A => Flip
end.
Inductive srml_valid_type (A : Type) : seq (nat * Type) -> @sRml A -> Prop :=
| svalid_fun_var : forall fl x,
List.In (x,A) fl ->
srml_valid_type A fl (sVar x)
| svalid_const : forall fl (c : A),
srml_valid_type A fl (sConst c)
| svalid_if : forall fl b m1 m2,
srml_valid_type bool fl b ->
srml_valid_type A fl m1 ->
srml_valid_type A fl m2 ->
srml_valid_type A fl (sIf b m1 m2)
| svalid_app : forall fl (B : Type) e1 e2,
@srml_valid_type (B -> A) fl e1 ->
@srml_valid_type B fl e2 ->
@srml_valid_type A fl (sApp B e1 e2)
| svalid_fix : forall fl B nf nx f x,
@srml_valid_type A ((nx,B) :: (nf,B -> A) :: fl) f ->
@srml_valid_type B fl x ->
srml_valid_type A fl (sFix B nf nx f x)
| svalid_random : forall fl e (H : A = nat),
srml_valid_type nat fl e ->
srml_valid_type A fl (sRandom H e)
| svalid_flip : forall fl (H : A = bool),
srml_valid_type A fl (sFlip H).
(** * Properties of sRml expressions *)
(* -------------------------------------------------------------------------------- *)
Lemma helper :
forall T A x1 x2 l,
srml_valid_type A l (sApp T x1 x2) -> srml_valid_type (T -> A) l x1 /\ srml_valid_type T l x2.
intros.
inversion H.
assert (e3 = x2) by apply (inj_pair2_eq_dec Type dec_eq [eta @sRml] T e3 x2 H4).
assert (e0 = x1) by apply (inj_pair2_eq_dec Type dec_eq (fun T : Type => @sRml _) T e0 x1 H1).
subst ; clear H1 ; clear H4.
split ; assumption.
Qed.
Lemma helper2 :
forall A B nx nf x1 x2 fl,
srml_valid_type A fl (sFix B nf nx x1 x2) ->
srml_valid_type A [:: (nx, B), (nf, B -> A) & fl] x1 /\
srml_valid_type B fl x2.
intros.
inversion H.
subst.
(* assert (f0 = x1) by (apply (inj_pair2_eq_dec Type dec_eq) in H4 ; assumption). *)
assert (x0 = x2) by (apply (inj_pair2_eq_dec Type dec_eq) in H6 ; assumption).
subst.
split ; assumption.
Qed.
Lemma srml_valid_weakening:
forall (p : nat * Type) (x : @sRml p.2) l1 l2 l3,
srml_valid_type p.2 (l1 ++ l3) x -> srml_valid_type p.2 (l1 ++ l2 ++ l3) x.
Proof.
intros.
generalize dependent l1.
induction x ; intros.
- inversion H.
constructor.
apply List.in_app_or in H2.
inversion H2.
+ apply List.in_or_app.
left.
assumption.
+ apply List.in_or_app.
right.
apply List.in_or_app.
right.
assumption.
- constructor.
- inversion H ; subst.
constructor ; eauto.
- apply helper in H.
inversion_clear H.
+ constructor ; eauto.
- apply helper2 in H.
inversion_clear H.
constructor.
+ apply (IHx1 ([:: (nx, B), (nf, B -> A) & l1])).
assumption.
+ apply IHx2.
assumption.
- inversion_clear H.
constructor ; eauto.
- constructor.
Qed.
Lemma sRml_simple :
forall A (x : @sRml A) l (x_valid : srml_valid_type A l x),
@rml_is_simple l (@sRml_to_rml A x).
Proof.
induction x ; intros.
(* sVar *)
{
inversion x_valid.
constructor.
assumption.
}
(* sConst *)
{ constructor. }
(* sIf *)
{
inversion x_valid ; subst.
constructor ; eauto 2.
}
(* sApp *)
{
apply helper in x_valid.
inversion x_valid.
constructor ; eauto 2.
}
(* sFix *)
{
apply helper2 in x_valid.
inversion_clear x_valid.
simpl.
constructor.
- apply IHx1.
assumption.
- apply IHx2.
assumption.
}
(* sRandom *)
{
inversion_clear x_valid.
simpl.
constructor.
apply IHx.
assumption.
}
(* sFlip *)
{
constructor.
}
Qed.
Lemma sRml_valid :
forall A (x : @sRml A) vl fl (x_valid : srml_valid_type A fl x),
rml_valid_type A vl fl (@sRml_to_rml A x).
Proof.
induction x ; intros.
(* sVar *)
{
simpl.
inversion x_valid ; subst.
apply (valid_fun_var vl fl (n,A)).
assumption.
}
(* sConst *)
{ constructor. }
(* sIf *)
{
simpl.
inversion x_valid.
constructor ; eauto.
}
(* sApp *)
{
simpl.
apply helper in x_valid.
inversion x_valid.
constructor ; eauto.
}
(* sFix *)
{
apply helper2 in x_valid.
inversion_clear x_valid.
apply IHx1 with (vl := vl) in H.
apply IHx2 with (vl := vl) in H0.
simpl.
constructor ; assumption.
}
(* sRandom *)
{
inversion_clear x_valid.
subst.
simpl.
constructor.
apply IHx.
assumption.
}
(* sFlip *)
{
simpl.
subst.
constructor.
}
Qed.
(** * Environment **)
(* -------------------------------------------------------------------------------- *)
Inductive valid_env : seq (nat * Type * Rml) -> seq (nat * Type) -> Prop :=
| env_nil l : valid_env nil l
| env_cons (x : nat * Type * Rml) xs l :
(@rml_is_simple l x.2) ->
(@rml_valid_type x.1.2 (map fst xs) l x.2) ->
valid_env xs l ->
valid_env (x :: xs) l.
Lemma valid_weakening:
forall (a : nat * Type * Rml) l1 l2 l3 fl,
rml_valid_type a.1.2 (l1 ++ l3) fl a.2 ->
rml_valid_type a.1.2 (l1 ++ l2 ++ l3) fl a.2.
Proof.
intros.
destruct a.
destruct p.
simpl in *.
generalize dependent fl.
generalize dependent T.
generalize dependent l1.
induction r ; intros.
(* Var *)
{
inversion H ; subst.
+ constructor.
apply List.in_app_or in H4.
inversion H4.
* apply List.in_or_app.
left.
assumption.
* apply List.in_or_app.
right.
apply List.in_or_app.
right.
assumption.
+ constructor 2.
assumption.
}
(* Const *)
{
inversion H ; subst.
constructor.
}
(* Let *)
{
inversion H ; subst.
constructor.
* apply IHr1.
assumption.
* apply (IHr2 (p :: l1)).
assumption.
}
(* If *)
{
inversion H ; subst.
constructor ; eauto.
}
(* App *)
{
inversion H ; subst.
constructor ; eauto.
}
(* Let_rec *)
{
inversion H ; subst.
constructor ; eauto.
}
(* Random *)
{
inversion H ; subst.
constructor.
apply IHr.
assumption.
}
(* Flip *)
{
inversion H ; subst.
constructor.
}
Qed.
Corollary valid_weakening_nil :
forall (a : nat * Type * Rml) l1 l2 fl,
rml_valid_type a.1.2 (l1) fl a.2 ->
rml_valid_type a.1.2 (l1 ++ l2) fl a.2.
Proof.
intros.
pose (valid_weakening a l1 l2 nil%SEQ).
rewrite <- (cats0 (l1 ++ l2)).
rewrite <- catA.
apply r.
rewrite cats0.
assumption.
Qed.
Lemma valid_weakening_fl :
forall (a : nat * Type * Rml) l1 l2 l3 vl,
rml_valid_type a.1.2 vl (l1 ++ l3) a.2 ->
rml_valid_type a.1.2 vl (l1 ++ l2 ++ l3) a.2.
Proof.
intros.
destruct a.
destruct p.
simpl in *.
generalize dependent vl.
generalize dependent T.
generalize dependent l1.
induction r ; intros.
(* Var *)
{
inversion H ; subst.
+ constructor.
assumption.
+ constructor.
apply List.in_app_or in H4.
inversion H4.
* apply List.in_or_app.
left.
assumption.
* apply List.in_or_app.
right.
apply List.in_or_app.
right.
assumption.
}
(* Const *)
{
inversion H.
constructor.
}
(* Let *)
{
inversion H ; subst.
constructor.
+ apply IHr1.
assumption.
+ apply IHr2.
assumption.
}
(* If *)
{
inversion H ; subst.
constructor ; eauto.
}
(* App *)
{
inversion H ; subst.
constructor ; eauto.
}
(* Let_rec *)
{
inversion H ; subst.
constructor ; eauto.
inversion H ; subst.
apply (IHr1 [:: (n1,T) , (n0,T -> T0) & l1]).
assumption.
}
(* Random *)
{
inversion H ; subst.
constructor.
apply IHr.
assumption.
}
(* Flip *)
{
inversion H ; subst.
constructor.
}
Qed.
(* -------------------------------------------------------------------------------- *)
Inductive verified_srml A fl :=
| verified : forall (y : @sRml A), srml_valid_type A fl y -> verified_srml A fl.
(* -------------------------------------------------------------------------------- *)
Fixpoint rml_to_sRml_l {A : Type} (x : Rml) vl fl
`{rml_simple : @rml_is_simple fl x} `{rml_valid : @rml_valid_type A vl fl x}
{struct x} : verified_srml A fl.
Proof.
(** Structure **)
destruct x.
(** Var **)
{
destruct b.
- exists (sVar p.1).
constructor.
inversion rml_valid ; subst.
rewrite <- surjective_pairing.
assumption.
- exfalso.
inversion rml_simple.
}
(** Const **)
{
assert (A = A0) by (inversion rml_valid ; reflexivity) ; subst.
exists (sConst a).
constructor.
}
(** Let **)
{ exfalso ; easy. }
(** If *)
{
assert (if_valid_type : (rml_valid_type bool vl fl x1 /\ rml_valid_type A vl fl x2 /\ rml_valid_type A vl fl x3)) by (intros; inversion rml_valid; easy).
inversion if_valid_type as [p1 [p2 p3]] ; clear if_valid_type.
assert (if_is_simple : @rml_is_simple fl x1 /\ @rml_is_simple fl x2 /\ @rml_is_simple fl x3) by (inversion rml_simple ; subst ; easy).
inversion if_is_simple as [s1 [s2 s3]] ; clear if_is_simple.
pose (rec1 := @rml_to_sRml_l bool x1 vl fl s1 p1).
pose (rec2 := @rml_to_sRml_l A x2 vl fl s2 p2).
pose (rec3 := @rml_to_sRml_l A x3 vl fl s3 p3).
destruct rec1 as [b' b'_valid].
destruct rec2 as [m1' m1'_valid].
destruct rec3 as [m2' m2'_valid].
exists (sIf b' m1' m2').
constructor ; assumption.
}
(** App *)
{
assert (app_valid_type : rml_valid_type (T -> A) vl fl x1 /\ rml_valid_type T vl fl x2) by (inversion rml_valid ; subst ; split ; try constructor ; easy).
inversion app_valid_type as [p1 p2] ; clear app_valid_type.
assert (app_is_simple : @rml_is_simple fl x1 /\ @rml_is_simple fl x2) by (inversion rml_simple ; subst ; split ; try easy ; constructor ; assumption).
inversion app_is_simple as [H1 H2] ; clear app_is_simple.
pose (rec1 := @rml_to_sRml_l (T -> A) x1 vl fl H1 p1).
pose (rec2 := @rml_to_sRml_l T x2 vl fl H2 p2).
destruct rec1 as [e1' e1'_valid].
destruct rec2 as [e2' e2'_valid].
exists (sApp T e1' e2').
constructor ; assumption.
}
(** Let rec **)
{
assert (@rml_is_simple [:: (n0,T) , (n,T -> T0) & fl] x1 /\ @rml_is_simple fl x2) by (inversion rml_simple ; subst ; easy).
inversion_clear H.
assert (rml_valid_type T0 vl [:: (n0,T), (n,T -> T0) & fl] x1 /\ rml_valid_type T vl fl x2) by (inversion rml_valid ; inversion H8 ; subst ; easy).
inversion_clear H.
pose (x1' := rml_to_sRml_l T0 x1 vl ((n0,T) :: (n,T -> T0) :: fl) H0 H2).
pose (x2' := rml_to_sRml_l T x2 vl fl H1 H3).
destruct x1' as [x1' x1'_valid].
destruct x2' as [x2' x2'_valid].
assert (A = T0) by (inversion rml_valid ; reflexivity) ; subst.
exists (sFix T n n0 x1' x2').
constructor ; assumption.
}
(** Random **)
{
assert (@rml_is_simple fl x) by (inversion rml_simple ; assumption).
assert (rml_valid_type nat vl fl x) by (inversion rml_valid ; assumption).
assert (A = nat) by (inversion rml_valid ; reflexivity).
pose (x' := rml_to_sRml_l nat x vl fl H H0).
destruct x' as [x' x'_valid].
exists (sRandom H1 x').
constructor ; assumption.
}
(** Flip **)
{
assert (A = bool) by (inversion rml_valid ; reflexivity).
exists (sFlip H).
constructor.
}
Defined.
(* -------------------------------------------------------------------------------- *)
Fixpoint lookup (p : (nat * Type)) (env : seq (nat * Type * Rml))
(fl : seq (nat * Type))
`{env_valid : valid_env env fl} `{_ : List.In p (map fst env) \/ List.In p fl}
{struct env} : verified_srml p.2 fl.
Proof.
intros.
induction env.
- exists (sVar p.1).
constructor.
rewrite <- surjective_pairing.
inversion H ; easy.
- destruct (asbool (a.1 = p)) eqn : bo.
+ assert (@rml_is_simple fl a.2) by (inversion env_valid ; subst ; assumption).
assert (rml_valid_type a.1.2 (map fst env) fl a.2) by (inversion env_valid ; assumption).
apply asboolW in bo.
subst.
refine (@rml_to_sRml_l a.1.2 a.2 (map fst env) fl H0 H1).
+ apply IHenv.
inversion env_valid ; assumption.
inversion H.
left.
inversion H0.
rewrite asboolT in bo.
inversion bo.
assumption.
assumption.
right.
assumption.
Defined.
Lemma rml_simple_weakening :
forall x l1 l2 l3, @rml_is_simple (l1 ++ l3) x -> @rml_is_simple (l1 ++ l2 ++ l3) x.
Proof.
induction x ; intros.
(** Var **)
{
inversion H ; subst.
constructor.
apply List.in_app_or in H1.
inversion H1.
+ apply List.in_or_app.
left.
assumption.
+ apply List.in_or_app.
right.
apply List.in_or_app.
right.
assumption.
}
(** Const **)
{ constructor. }
(** Let **)
{ inversion H. }
(** If **)
{
inversion H ; subst.
constructor ; eauto.
}
(** App **)
{
inversion H ; subst.
constructor ; eauto.
}
(** Let rec **)
{
inversion H ; subst.
constructor.
- apply (IHx1 ((n0,T) :: (n,T -> T0) :: l1) l2 l3).
assumption.
- apply IHx2.
assumption.
}
(** Random *)
{
inversion H ; subst.
constructor.
apply IHx.
assumption.
}
(** Flip **)
{
constructor.
}
Qed.
Lemma extend_fl_still_valid :
forall p env fl, valid_env env fl ->
valid_env env (p :: fl).
Proof.
intros.
induction env.
- constructor.
- inversion H ; subst.
constructor.
+ apply (rml_simple_weakening a.2 nil [:: p] fl).
assumption.
+ apply (valid_weakening_fl a nil [:: p] fl).
assumption.
+ apply IHenv.
assumption.
Qed.
Fixpoint replace_all_variables_aux_type
A (x : Rml) (env : seq (nat * Type * Rml))
(fl : seq (nat * Type)) `{env_valid : valid_env env fl}
`{x_valid : @rml_valid_type A (map fst env) fl x} {struct x}
: verified_srml A fl.
Proof.
(** Structure **)
generalize dependent fl.
generalize dependent env.
generalize dependent A.
induction x ; intros.
(** Var *)
{
assert (List.In p (map fst env) \/ List.In p fl) by (inversion x_valid ; subst ; auto).
destruct p.
assert (A = T) by (inversion x_valid ; subst ; reflexivity) ; subst.
apply (@lookup (n,T) env fl env_valid H).
}
(** Const **)
{
assert (A0 = A) by (inversion x_valid ; subst ; reflexivity) ; subst.
exists (sConst a).
constructor.
}
(** Let-stm **)
{
assert (x1_valid : rml_valid_type p.2 (map fst env) fl x1) by (inversion x_valid ; subst ; assumption).
pose (x1' := replace_all_variables_aux_type p.2 x1 env fl env_valid x1_valid).
destruct x1' as [x1'].
pose (x1'' := @sRml_to_rml p.2 x1').
assert (x1''_simple : @rml_is_simple fl x1'').
apply sRml_simple.
assumption.
assert (x1''_valid : @rml_valid_type p.2 (map fst env) fl x1'').
apply sRml_valid.
assumption.
assert (x2_valid : rml_valid_type A (p :: [seq i.1 | i <- env]) fl x2) by (inversion x_valid ; subst ; assumption).
assert (env_valid' : valid_env ((p,x1'') :: env) fl) by (constructor ; assumption).
refine (replace_all_variables_aux_type A x2 ((p,x1'') :: env) fl env_valid' x2_valid).
}
(** If-stm **)
{
assert (x1_valid : rml_valid_type bool (map fst env) fl x1) by (inversion x_valid ; subst ; assumption).
assert (x2_valid : rml_valid_type A (map fst env) fl x2) by (inversion x_valid ; subst ; assumption).
assert (x3_valid : rml_valid_type A (map fst env) fl x3) by (inversion x_valid ; subst ; assumption).
pose (b' := replace_all_variables_aux_type bool x1 env fl env_valid x1_valid).
pose (m1' := replace_all_variables_aux_type A x2 env fl env_valid x2_valid).
pose (m2' := replace_all_variables_aux_type A x3 env fl env_valid x3_valid).
destruct b' as [b'].
destruct m1' as [m1'].
destruct m2' as [m2'].
pose (b'' := sRml_to_rml b').
pose (m1'' := sRml_to_rml m1').
pose (m2'' := sRml_to_rml m2').
refine (rml_to_sRml_l (If_stm b'' m1'' m2'') [seq i.1 | i <- env] fl).
constructor ; eauto using sRml_simple.
constructor ; eauto using sRml_valid.
}
(** App-stm **)
{
assert (x1_valid : rml_valid_type (T -> A) (map fst env) fl x1) by (inversion x_valid ; subst ; assumption).
assert (x2_valid : rml_valid_type T (map fst env) fl x2) by (inversion x_valid ; subst ; assumption).
pose (e1' := replace_all_variables_aux_type (T -> A) x1 env fl env_valid x1_valid).
pose (e2' := replace_all_variables_aux_type T x2 env fl env_valid x2_valid).
destruct e1' as [e1'].
destruct e2' as [e2'].
pose (e1'' := sRml_to_rml e1').
pose (e2'' := sRml_to_rml e2').
refine (rml_to_sRml_l (App_stm T e1'' e2'') [seq i.1 | i <- env] fl).
constructor ; eauto 2 using sRml_simple.
constructor ; eauto 2 using sRml_valid.
}
(** Let rec **)
{
pose (fl_x1 := [:: (n0, T), (n, T -> T0) & fl]).
assert (x1_valid : rml_valid_type A [seq i.1 | i <- env] fl_x1 x1) by (inversion x_valid ; subst ; assumption).
assert (x2_valid : rml_valid_type T [seq i.1 | i <- env] fl x2) by (inversion x_valid ; subst ; assumption).
assert (env_valid_x1 : valid_env env fl_x1) by (repeat apply extend_fl_still_valid ; assumption).
pose (x1' := replace_all_variables_aux_type A x1 env fl_x1 env_valid_x1 x1_valid).
pose (x2' := replace_all_variables_aux_type T x2 env fl env_valid x2_valid).
destruct x1' as [x1'].
destruct x2' as [x2'].
assert (A = T0) by (inversion x_valid ; subst ; reflexivity) ; subst.
exists (sFix T n n0 x1' x2').
constructor ; assumption.
}
(** Random **)
{
assert (inner_x_valid : rml_valid_type nat (map fst env) fl x) by (inversion x_valid ; assumption).
pose (x' := replace_all_variables_aux_type nat x env fl env_valid inner_x_valid).
assert (type_eq : A = nat) by (inversion x_valid ; reflexivity).
destruct x' as [x' x'_valid].
exists (sRandom type_eq x').
constructor ; assumption.
}
(** Flip **)
{
assert (A = bool) by (inversion x_valid ; reflexivity).
exists (sFlip H).
constructor.
}
Defined.
Definition replace_all_variables_type A (x : Rml) `{x_valid : rml_valid_type A nil nil x} :=
@replace_all_variables_aux_type A x nil nil (env_nil nil) x_valid.
(* -------------------------------------------------------------------------------- *)