forked from xdf-modules/xdf-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_xdf.m
1163 lines (1056 loc) · 49.9 KB
/
load_xdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [streams,fileheader] = load_xdf(filename,varargin)
% Import an XDF file.
% [Streams,FileHeader] = load_xdf(Filename, Options...)
%
% This is a MATLAB importer for multi-stream XDF (Extensible Data Format) recordings. All
% information covered by the XDF 1.0 specification is imported, plus any additional meta-data
% associated with streams or with the container file itself.
%
% See https://github.com/sccn/xdf/ for more information on XDF.
%
% The function supports several further features, such as compressed XDF archives, robust
% time synchronization, support for breaks in the data, as well as some other defects.
%
% In:
% Filename : name of the file to import (*.xdf or *.xdfz)
%
% Options... : A list of optional name-value arguments for special use cases. The allowed names
% are listed in the following:
%
% Parameters that control various processing features:
%
% 'Verbose' : Whether to print verbose diagnostics. (default: false)
%
% 'HandleClockSynchronization' : Whether to enable clock synchronization based on
% ClockOffset chunks. (default: true)
%
% 'HandleJitterRemoval' : Whether to perform jitter removal for regularly sampled
% streams. (default: true)
%
% 'OnChunk' : Function that is called for each chunk of data as it
% is being retrieved from the file; the function is allowed to modify the
% data (for example, sub-sample it). The four input arguments are 1) the
% matrix of [#channels x #samples] values (either numeric or 2d cell
% array of strings), 2) the vector of unprocessed local time stamps (one
% per sample), 3) the info struct for the stream (same as the .info field
% in the final output, buth without the .effective_srate sub-field), and
% 4) the scalar stream number (1-based integers). The three return values
% are 1) the (optionally modified) data, 2) the (optionally modified)
% time stamps, and 3) the (optionally modified) header (default: []).
%
% 'DisableVendorSpecifics' : Whether to perform certain vendor or system specific
% operations. One example is the "BrainVision RDA" data
% where it is necessary to pass the time stamps of a newly
% introduced marker identifier channel on to the actual markers
% in order to keep them perfectly in sync with the EEG data.
% 'DisableVendorSpecifics' takes the base names of certain
% streams derived from the same source as a cell array of
% strings (e.g. 'BrainVision RDA'). It is also possible to
% disable vendor specifics altogether by providing the
% value 'all'.
%
% Parameters for advanced failure recovery in clock synchronization:
%
% 'HandleClockResets' : Whether the importer should check for potential resets of the
% clock of a stream (e.g. computer restart during recording, or
% hot-swap). Only useful if the recording system supports
% recording under such circumstances. (default: true)
%
% 'ClockResetThresholdStds' : A clock reset must be accompanied by a ClockOffset
% chunk being delayed by at least this many standard
% deviations from the distribution. (default: 5)
%
% 'ClockResetThresholdSeconds' : A clock reset must be accompanied by a ClockOffset
% chunk being delayed by at least this many seconds.
% (default: 5)
%
% 'ClockResetThresholdOffsetStds' : A clock reset must be accompanied by a
% ClockOffset difference that lies at least this many
% standard deviations from the distribution. (default: 10)
%
% 'ClockResetThresholdOffsetSeconds' : A clock reset must be accompanied by a
% ClockOffset difference that is at least this
% many seconds away from the median. (default: 1)
%
% 'WinsorThreshold' : Error threshold beyond which clock offset deviations are considered
% outliers, and therefore penalized less severely (linear instead of quadratic).
% (default: 0.0001)
%
% 'ClockResetMaxJitter' : Maximum tolerable jitter (in seconds of error) for clock
% reset handling. (default: 5)
%
% 'CorrectStreamLags' : Apply lag correction described by timing spec sheets in the file.
% (default: true)
%
% Parameters for jitter removal in the presence of data breaks:
%
% 'JitterBreakThresholdSeconds' : An interruption in a regularly-sampled stream of at least this
% many seconds will be considered as a potential break (if also
% the BreakThresholdSamples is crossed) and multiple segments
% will be returned. Default: 1
%
% 'JitterBreakThresholdSamples' : An interruption in a regularly-sampled stream of at least this
% many samples will be considered as a potential break (if also
% the BreakThresholdSeconds is crossed) and multiple segments
% will be returned. Default: 500
%
% Parameters for streams that can drop samples:
%
% 'FrameRateAccuracy' : How accurate the nominal frame rate is.
% Used for can_drop_samples == true frames to determine
% the maximum possible number of dropped frames. Default: 0.05%
%
% Out:
% Streams : cell array of structs, one for each stream; the structs have the following content:
% .time_series field: contains the stream's time series [#Channels x #Samples]
% this matrix is of the type declared in .info.channel_format
% .time_stamps field: contains the time stamps for each sample (synced across streams)
%
% .info field: contains the meta-data of the stream (all values are strings)
% .name: name of the stream
% .type: content-type of the stream ('EEG','Events', ...)
% .channel_format: value format ('int8','int16','int32','int64','float32','double64','string')
% .nominal_srate: nominal sampling rate of the stream (as declared by the device);
% zero for streams with irregular sampling rate
% .effective_srate: effective (measured) sampling rate of the stream, if regular
% (otherwise omitted)
% .desc: struct with any domain-specific meta-data declared for the stream; see
% www.xdf.org for the declared specifications
%
% .segments field: struct array containing segment ranges for regularly sampled
% time series with breaks (not present if the stream is irregular)
% .index_range: 1st and last index of the segment within the .time_series/.time_stamps
% arrays
% .t_begin: time of the 1st sample in the segment, in seconds
% .t_end: time of the last sample in the segment, in seconds
% .duration: duration of the segment, in seconds
% .num_samples: number of samples in the segment
% .effective_srate: effective (i.e. measured) sampling rate within the segment
%
% FileHeader : struct with file header contents in the .info field
%
% Examples:
% % load the streams contained in a given XDF file
% streams = load_xdf('C:\Recordings\myrecording.xdf')
%
% License:
% This file is covered by the BSD license.
%
% Copyright (c) 2012, Christian Kothe
% Portions Copyright (c) 2010, Wouter Falkena
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2012-04-22
%
% Contains portions of xml2struct Copyright (c) 2010, Wouter Falkena,
% ASTI, TUDelft, 21-08-2010
%
% Contains frame snapping routine to handle dropped video frames by
% Matthew Grivich.
%
% version 1.13
LIBVERSION = '1.14';
% check inputs
opts = cell2struct(varargin(2:2:end),varargin(1:2:end),2);
if ~isfield(opts,'OnChunk')
opts.OnChunk = []; end
if ~isfield(opts,'Verbose')
opts.Verbose = false; end
if ~isfield(opts,'HandleClockSynchronization')
opts.HandleClockSynchronization = true; end
if ~isfield(opts,'HandleClockResets')
opts.HandleClockResets = true; end
if ~isfield(opts,'HandleJitterRemoval')
opts.HandleJitterRemoval = true; end
if ~isfield(opts,'JitterBreakThresholdSeconds')
opts.JitterBreakThresholdSeconds = 1; end
if ~isfield(opts,'JitterBreakThresholdSamples')
opts.JitterBreakThresholdSamples = 500; end
if ~isfield(opts,'ClockResetThresholdSeconds')
opts.ClockResetThresholdSeconds = 5; end
if ~isfield(opts,'ClockResetThresholdStds')
opts.ClockResetThresholdStds = 5; end
if ~isfield(opts,'ClockResetThresholdOffsetSeconds')
opts.ClockResetThresholdOffsetSeconds = 1; end
if ~isfield(opts,'ClockResetThresholdOffsetStds')
opts.ClockResetThresholdOffsetStds = 10; end
if ~isfield(opts,'WinsorThreshold')
opts.WinsorThreshold = 0.0001; end
if ~isfield(opts,'ClockResetMaxJitter')
opts.ClockResetMaxJitter = 5; end
if ~isfield(opts,'DisableVendorSpecifics')
opts.DisableVendorSpecifics = {}; end
if ~isfield(opts,'CorrectStreamLags')
opts.CorrectStreamLags = true; end
if ~isfield(opts,'FrameRateAccuracy')
opts.FrameRateAccuracy = .05; end
if ~exist(filename,'file')
error(['The file "' filename '" does not exist.']); end
% uncompress if necessary (note: "bonus" feature, not part of the XDF 1.0 spec)
[p,n,x] = fileparts(filename);
if strcmp(x,'.xdfz')
% idea for this type of approach by Michael Kleder
import com.mathworks.mlwidgets.io.InterruptibleStreamCopier
src = java.io.FileInputStream(filename);
flt = java.util.zip.InflaterInputStream(src);
filename = [p filesep n '_temp_uncompressed' x];
dst = java.io.FileOutputStream(filename);
copier = InterruptibleStreamCopier.getInterruptibleStreamCopier;
copier.copyStream(flt,dst);
dst.close();
src.close();
end
streams = {}; % cell array of returned streams (in the order of appearance in the file)
idmap = containers.Map('keyType','uint32','valueType','uint32'); % remaps stream id's onto indices in streams
temp = struct(); % struct array of temporary per-stream information
fileheader = struct(); % the file header
f = fopen(filename,'r','ieee-le.l64'); % file handle
closer = onCleanup(@()close_file(f,filename)); % object that closes the file when the function exits
filesize = getfield(dir(filename),'bytes');
% there is a fast C mex file for the inner loop, but it's
% not necessarily available for every platform
[this_path, ~, ~] = fileparts(mfilename('fullpath'));
mex_fname = ['load_xdf_innerloop.' mexext];
function have_mex = assert_working_innerloop
have_mex = exist('load_xdf_innerloop', 'file');
if have_mex
try
[~, ~] = load_xdf_innerloop(NaN, NaN, 'incorrect', 0, 0);
catch ME
err_msg = split(ME.message);
if ~strcmpi(err_msg{2}, 'FormatString')
disp('load_xdf_innerloop mex file found but not functional.');
delete(fullfile(this_path, mex_fname));
have_mex = false;
end
end
end
end
have_mex = assert_working_innerloop();
if ~assert_working_innerloop()
if opts.Verbose
disp(['NOTE: Compiled binary load_xdf_innerloop missing or non-functional.',...
' Attempting to download...']);
end
mex_url = ['https://github.com/xdf-modules/xdf-Matlab/releases/download/v',...
LIBVERSION, '/', mex_fname];
try
websave(fullfile(this_path, mex_fname), mex_url);
catch ME
if opts.Verbose
disp('Unable to download compiled load_xdf_innerloop for your platform.');
end
%rethrow(ME);
end
end
if ~assert_working_innerloop()
if opts.Verbose
disp(['NOTE: Download failed or non-functional.',...
' Attempting to compile...']);
end
try
mex(fullfile(this_path, 'load_xdf_innerloop.c'), '-outdir', this_path);
have_mex = true;
catch ME
disp('Unable to compile, falling back to slower uncompiled code.');
end
end
% ======================================================
% === parse the file ([SomeText] refers to XDF Spec) ===
% ======================================================
% read [MagicCode]
if ~strcmp(fread(f,4,'*char')','XDF:')
error(['This is not a valid XDF file (' filename ').']); end
% for each chunk...
if opts.Verbose; fprintf('Now reading from %s ...', filename); end
while 1
% read [NumLengthBytes], [Length]
len = double(read_varlen_int(f));
if ~len
if ftell(f) < filesize-1024
fprintf(' got zero-length chunk, scanning forward to next boundary chunk.\n');
scan_forward(f);
continue;
else
if opts.Verbose
fprintf(' reached end of file.\n'); end
break;
end
end
% read [Tag]
tag = fread(f,1,'uint16');
if opts.Verbose
fprintf(' read tag: %i at %d bytes, length=%d\n',tag,ftell(f),len); end
switch tag
case 3 % read [Samples] chunk
try
% read [StreamId]
id = idmap(fread(f,1,'uint32'));
if have_mex
% read the chunk data at once
data = fread(f,len-6,'*uint8');
% run the mex kernel
[values,timestamps] = load_xdf_innerloop(data, temp(id).chns, temp(id).readfmt, temp(id).sampling_interval, temp(id).last_timestamp);
temp(id).last_timestamp = timestamps(end);
else % fallback MATLAB implementation
% read [NumSampleBytes], [NumSamples]
num = read_varlen_int(f);
% allocate space
timestamps = zeros(1,num);
if strcmp(temp(id).readfmt,'*string')
values = cell(temp(id).chns,num);
else
values = zeros(temp(id).chns,num);
end
% for each sample...
for s=1:num
% read or deduce time stamp
if fread(f,1,'*uint8')
timestamps(s) = fread(f,1,'double');
else
timestamps(s) = temp(id).last_timestamp + temp(id).sampling_interval;
end
% read the values
if strcmp(temp(id).readfmt,'*string')
for v = 1:size(values,1)
values{v,s} = fread(f,double(read_varlen_int(f)),'*char')'; end
else
values(:,s) = fread(f,size(values,1),temp(id).readfmt);
end
temp(id).last_timestamp = timestamps(s);
end
end
% optionally send through the OnChunk function
if ~isempty(opts.OnChunk)
[values,timestamps,streams{id}] = opts.OnChunk(values,timestamps,streams{id},id); end %#ok<*AGROW>
% append to the time series...
temp(id).time_series{end+1} = values;
temp(id).time_stamps{end+1} = timestamps;
catch e
% an error occurred (perhaps a chopped-off file): emit a warning
% and scan forward to the next recognized chunk.
fprintf(' got error "%s" (%s), scanning forward to next boundary chunk.\n',e.identifier,e.message);
scan_forward(f);
end
case 2 % read [StreamHeader] chunk
% read [StreamId]
streamid = fread(f,1,'uint32');
id = length(streams)+1;
idmap(streamid) = id;
% read [Content]
header = parse_xml_struct(fread(f,len-6,'*char')');
if ~isfield(header.info, 'desc')
header.info.desc = [];
end
streams{id} = header;
if opts.Verbose
fprintf([' found stream ' header.info.name '\n']); end
% generate a few temporary fields
temp(id).chns = str2num(header.info.channel_count); %#ok<*ST2NM>
temp(id).srate = str2num(header.info.nominal_srate);
temp(id).last_timestamp = 0;
temp(id).time_series = {};
temp(id).time_stamps = {};
temp(id).clock_times = [];
temp(id).offset_values = [];
if temp(id).srate > 0
temp(id).sampling_interval = 1/temp(id).srate;
else
warning('Nominal sampling rate of stream %s is 0. Calculated effective sampling rate might not be meaningful, relying on this rate is not recommended.', header.info.name);
temp(id).sampling_interval = 0;
end
% fread parsing format for data values
temp(id).readfmt = ['*' header.info.channel_format];
if strcmp(temp(id).readfmt,'*double64') && ~have_mex
temp(id).readfmt = '*double'; end % for fread()
case 6 % read [StreamFooter] chunk
% read [StreamId]
id = idmap(fread(f,1,'uint32'));
% read [Content]
footer = parse_xml_struct(fread(f,len-6,'*char')');
streams{id} = hlp_superimposedata(footer,streams{id});
case 1 % read [FileHeader] chunk
fileheader = parse_xml_struct(fread(f,len-2,'*char')');
case 4 % read [ClockOffset] chunk
try
% read [StreamId]
id = idmap(fread(f,1,'uint32'));
% read [CollectionTime]
temp(id).clock_times(end+1) = fread(f,1,'double');
% read [OffsetValue]
temp(id).offset_values(end+1) = fread(f,1,'double');
catch e
% an error occurred (perhaps a chopped-off file): emit a
% warning and scan forward to the next recognized chunk
fprintf(' got error "%s" (%s), scanning forward to next boundary chunk.\n',e.identifier,e.message);
scan_forward(f);
end
case 5 % read [Boundary] chunk
fread(f, len-2, '*uint8');
otherwise
% skip other chunk types
fread(f,len-2,'*uint8');
end
end
% concatenate the signal across chunks
for k=1:length(temp)
try
temp(k).time_series = [temp(k).time_series{:}];
temp(k).time_stamps = [temp(k).time_stamps{:}];
catch e
disp(['Could not concatenate time series for stream ' streams{k}.info.name '; skipping.']);
disp(['Reason: ' e.message]);
temp(k).time_series = [];
temp(k).time_stamps = [];
end
end
% ===================================================================
% === perform (fault-tolerant) clock synchronization if requested ===
% ===================================================================
if opts.HandleClockSynchronization
if opts.Verbose
disp(' performing clock synchronization...'); end
for k=1:length(temp)
if ~isempty(temp(k).time_stamps)
try
clock_times = temp(k).clock_times;
offset_values = temp(k).offset_values;
if isempty(clock_times)
error('No clock offset values present.'); end
catch
disp(['No clock offsets were available for stream "' streams{k}.info.name '"']);
continue;
end
% detect clock resets (e.g., computer restarts during recording) if requested
% this is only for cases where "everything goes wrong" during recording
% note that this is a fancy feature that is not needed for normal XDF compliance
if opts.HandleClockResets
% first detect potential breaks in the synchronization data; this is only necessary when the
% importer should be able to deal with recordings where the computer that served a stream
% was restarted or hot-swapped during an ongoing recording, or the clock was reset otherwise
time_diff = diff(clock_times);
value_diff = abs(diff(offset_values));
% points where a glitch in the timing of successive clock measurements happened
time_glitch = (time_diff < 0 | (((time_diff - median(time_diff)) ./ median(abs(time_diff-median(time_diff)))) > opts.ClockResetThresholdStds & ...
((time_diff - median(time_diff)) > opts.ClockResetThresholdSeconds)));
% points where a glitch in successive clock value estimates happened
value_glitch = (value_diff - median(value_diff)) ./ median(abs(value_diff-median(value_diff))) > opts.ClockResetThresholdOffsetStds & ...
(value_diff - median(value_diff)) > opts.ClockResetThresholdOffsetSeconds;
% points where both a time glitch and a value glitch co-occur are treated as resets
resets_at = time_glitch & value_glitch;
% determine the [begin,end] index ranges between resets
if any(resets_at)
tmp = find(resets_at)';
tmp = [tmp tmp+1]';
tmp = [1 tmp(:)' length(resets_at)];
ranges = num2cell(reshape(tmp,2,[])',2);
if opts.Verbose
disp([' found ' num2str(nnz(resets_at)) ' clock resets in stream ' streams{k}.info.name '.']); end
else
ranges = {[1,length(clock_times)]};
end
else
% otherwise we just assume that there are no clock resets
ranges = {[1,length(clock_times)]};
end
% Calculate clock offset mappings for each data range
mappings = {};
for r=1:length(ranges)
idx = ranges{r};
if idx(1) ~= idx(2)
Ax = clock_times(idx(1):idx(2))' / opts.WinsorThreshold;
y = offset_values(idx(1):idx(2))' / opts.WinsorThreshold;
fit_params = robust_fit([ones(size(Ax)) Ax], y);
fit_params(1) = fit_params(1)*opts.WinsorThreshold;
mappings{r} = fit_params;
else
mappings{r} = [offset_values(idx(1)) 0]; % just one measurement
end
end
if length(ranges) == 1
% apply the correction to all time stamps
temp(k).time_stamps = temp(k).time_stamps + (mappings{1}(1) + mappings{1}(2)*temp(k).time_stamps);
else
% if there are data segments measured with different clocks we need to
% determine, for any time stamp lying between two segments, to which of the segments it belongs
clock_segments = zeros(size(temp(k).time_stamps)); % the segment index to which each stamp belongs
begin_of_segment = 1; % first index into time stamps that belongs to the current segment
end_of_segment = NaN; %#ok<NASGU> % last index into time stamps that belongs to the current segment
for r=1:length(ranges)-1
cur_end_time = clock_times(ranges{r}(2)); % time at which the current segment ends
next_begin_time = clock_times(ranges{r+1}(1)); % time at which the next segment begins
% get the data that is not yet processed
remaining_indices = begin_of_segment:length(temp(k).time_stamps);
if isempty(remaining_indices)
break; end
remaining_data = temp(k).time_stamps(remaining_indices);
if next_begin_time > cur_end_time
% clock jumps forward: the end of the segment is where the data time stamps
% lie closer to the next segment than the current in time
end_of_segment = remaining_indices(min(find([abs(remaining_data-cur_end_time) > abs(remaining_data-next_begin_time),true],1)-1,length(remaining_indices)));
else
% clock jumps backward: the end of the segment is where the data time stamps
% jump back by more than the max conceivable jitter (as any negative delta is jitter)
end_of_segment = remaining_indices(min(find([diff(remaining_data) < -opts.ClockResetMaxJitter,true],1),length(remaining_indices)));
end
% assign the segment of data points to the current range
% go to next segment
clock_segments(begin_of_segment:end_of_segment) = r;
begin_of_segment = end_of_segment+1;
end
% assign all remaining time stamps to the last segment
clock_segments(begin_of_segment:end) = length(ranges);
% apply corrections on a per-segment basis
for r=1:length(ranges)
temp(k).time_stamps(clock_segments==r) = temp(k).time_stamps(clock_segments==r) + (mappings{r}(1) + mappings{r}(2)*temp(k).time_stamps(clock_segments==r)); end
end
end
end
end
% ===========================================
% === perform jitter removal if requested ===
% ===========================================
if opts.HandleJitterRemoval
% jitter removal is a bonus feature that yields linearly increasing timestamps from data
% where samples had been time stamped with some jitter (e.g., due to operating system
% delays)
if opts.Verbose
disp(' performing jitter removal...'); end
for k=1:length(temp)
if ~isempty(temp(k).time_stamps) && temp(k).srate
if isfield(streams{k}.info.desc, 'synchronization') && ...
isfield(streams{k}.info.desc.synchronization, 'can_drop_samples') && ...
strcmp(streams{k}.info.desc.synchronization.can_drop_samples, 'true')
temp(k).time_stamps = droppedFramesCorrection(temp(k).time_stamps,temp(k).srate, opts.FrameRateAccuracy);
else
% identify breaks in the data
diffs = diff(temp(k).time_stamps);
breaks_at = abs(diffs) > max(opts.JitterBreakThresholdSeconds,opts.JitterBreakThresholdSamples*temp(k).sampling_interval);
if any(breaks_at)
% turn the break mask into a cell array of [begin,end] index ranges
tmp = find(breaks_at)';
tmp = [tmp tmp+1]';
tmp = [1 tmp(:)' length(breaks_at)];
ranges = num2cell(reshape(tmp,2,[])',2);
if opts.Verbose
disp([' found ' num2str(nnz(breaks_at)) ' data breaks in stream ' streams{k}.info.name '.']); end
else
ranges = {[1,length(temp(k).time_stamps)]};
end
% process each segment separately
segments = repmat(struct(),1,length(ranges));
for r=1:length(ranges)
range = ranges{r};
segments(r).num_samples = range(2)-range(1)+1;
segments(r).index_range = range;
if segments(r).num_samples > 0
indices = segments(r).index_range(1):segments(r).index_range(2);
% regress out the jitter
mapping = temp(k).time_stamps(indices) / [ones(1,length(indices)); indices];
temp(k).time_stamps(indices) = mapping(1) + mapping(2) * indices;
end
% calculate some other meta-data about the segments
segments(r).t_begin = temp(k).time_stamps(range(1));
segments(r).t_end = temp(k).time_stamps(range(2));
segments(r).duration = segments(r).t_end - segments(r).t_begin;
segments(r).effective_srate = (segments(r).num_samples - 1) / segments(r).duration;
end
% calculate the weighted mean sampling rate over all segments
temp(k).effective_rate = sum(bsxfun(@times,[segments.effective_srate],[segments.num_samples]/sum([segments.num_samples])));
% transfer the information into the output structs
streams{k}.info.effective_srate = temp(k).effective_rate;
streams{k}.segments = segments;
end
end
end
else
% calculate effective sampling rate
for k=1:length(temp)
if ~isempty(temp(k).time_stamps)
temp(k).effective_srate = (length(temp(k).time_stamps) - 1) / (temp(k).time_stamps(end) - temp(k).time_stamps(1));
else
temp(k).effective_srate = 0; % BCILAB sets this to NaN
end
% transfer the information into the output structs
streams{k}.info.effective_srate = temp(k).effective_srate;
end
end
% copy the information into the output
for k=1:length(temp)
offset_mean = 0;
if opts.CorrectStreamLags && ...
isfield(streams{k}.info.desc, 'synchronization') && ...
isfield(streams{k}.info.desc.synchronization, 'offset_mean')
offset_mean = str2num(streams{k}.info.desc.synchronization.offset_mean);
end
streams{k}.time_series = temp(k).time_series;
streams{k}.time_stamps = temp(k).time_stamps - offset_mean;
end
% =========================================
% === peform vendor specific operations ===
% =========================================
if ~any(strcmp('all',opts.DisableVendorSpecifics))
% BrainVision RDA
targetName = 'BrainVision RDA';
if ~any(strcmp(opts.DisableVendorSpecifics,targetName))
% find a target EEG stream...
for k=1:length(streams)
if strcmp(streams{k}.info.name,targetName) % Is a BrainVision RDA stream?
mkChan = [];
if ~iscell(streams{ k }.info.desc.channels.channel)
warning('Channel structure not a cell array (likely a g.tek writer compatibility issue; Using hack to import channel info)');
end
for iChan = 1:length( streams{ k }.info.desc.channels.channel ) % Find marker index channel (any channel, not necessary last)
if iscell(streams{ k }.info.desc.channels.channel)
chanStruct = streams{ k }.info.desc.channels.channel{ iChan };
else
chanStruct = streams{ k }.info.desc.channels.channel( iChan );
end
if strcmp( chanStruct.label, 'MkIdx' ) && strcmp( chanStruct.type, 'Marker' ) && strcmp( chanStruct.unit, 'Counts (decimal)' )
mkChan = iChan;
break % Only one marker channel expected
end
end
if ~isempty( mkChan ) % Has a marker index channel?
for m = 1:length( streams ) % find a corresponding indexed marker stream...
if strcmp( streams{ m }.info.name, [ targetName ' Markers' ] ) && strcmp( streams{ m }.info.hostname, streams{ k }.info.hostname ) && strncmp( streams{ m }.info.source_id, streams{ k }.info.source_id, length( streams{ k }.info.source_id ) )
if opts.Verbose
disp( [ ' performing ', targetName, ' specific tasks for stream ', num2str( k ), '...' ] );
end
streams = ProcessBVRDAindexedMarkers( streams, k, m, mkChan );
end
end
% Remove marker index channel
streams{ k }.time_series( mkChan, : ) = [];
streams{ k }.info.desc.channels.channel( mkChan ) = [];
% Decrement channel count by 1
streams{ k }.info.channel_count = num2str( str2num( streams{ k }.info.channel_count ) - 1 );
end
end
end
end
end
end
% ========================
% === helper functions ===
% ========================
% scan forward through the file until we find the boundary signature
function scan_forward(f)
block_len = 2^20;
signature = uint8([67 165 70 220 203 245 65 15 179 14 213 70 115 131 203 228]);
while 1
curpos = ftell(f);
block = fread(f,block_len,'*uint8');
matchpos = strfind(block',signature);
if ~isempty(matchpos)
fseek(f,curpos+matchpos+15,'bof');
fprintf(' scan forward found a boundary chunk.\n');
break;
end
if length(block) < block_len
fprintf(' scan forward reached end of file with no match.\n');
break;
end
end
end
% read a variable-length integer
function num = read_varlen_int(f)
try
switch fread(f,1,'*uint8')
case 1
num = fread(f,1,'*uint8');
case 4
num = fread(f,1,'*uint32');
case 8
num = fread(f,1,'*uint64');
otherwise
error('Invalid variable-length integer encountered.');
end
catch %#ok<*CTCH>
num = 0;
end
end
% close the file and delete temporary data
function close_file(f,filename)
fclose(f);
if contains(filename, '_temp_uncompressed.xdf')
delete(filename);
end
end
% parse a simplified (attribute-free) subset of XML into a MATLAB struct
function result = parse_xml_struct(str)
import org.xml.sax.InputSource
import javax.xml.parsers.*
import java.io.*
tmp = InputSource();
tmp.setCharacterStream(StringReader(str));
result = parseChildNodes(xmlread(tmp));
% this is part of xml2struct (slightly simplified)
function [children,ptext] = parseChildNodes(theNode)
% Recurse over node children.
children = struct;
ptext = [];
if theNode.hasChildNodes
childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
for count = 1:numChildNodes
theChild = childNodes.item(count-1);
[text,name,childs] = getNodeData(theChild);
if (~strcmp(name,'#text') && ~strcmp(name,'#comment'))
if (isfield(children,name))
if (~iscell(children.(name)))
children.(name) = {children.(name)}; end
index = length(children.(name))+1;
children.(name){index} = childs;
if(~isempty(text))
children.(name){index} = text; end
else
children.(name) = childs;
if(~isempty(text))
children.(name) = text; end
end
elseif (strcmp(name,'#text'))
if (~isempty(regexprep(text,'[\s]*','')))
if (isempty(ptext))
ptext = text;
else
ptext = [ptext text];
end
end
end
end
end
end
% this is part of xml2struct (slightly simplified)
function [text,name,childs] = getNodeData(theNode)
% Create structure of node info.
name = char(theNode.getNodeName);
if ~isvarname(name)
name = regexprep(name,'[-]','_dash_');
name = regexprep(name,'[:]','_colon_');
name = regexprep(name,'[.]','_dot_');
end
[childs,text] = parseChildNodes(theNode);
if (isempty(fieldnames(childs)))
try
text = char(theNode.getData);
catch
end
end
end
end
function x = robust_fit(A,y,rho,iters)
% Perform a robust linear regression using the Huber loss function.
% x = robust_fit(A,y,rho,iters)
%
% Input:
% A : design matrix
% y : target variable
% rho : augmented Lagrangian variable (default: 1)
% iters : number of iterations to perform (default: 1000)
%
% Output:
% x : solution for x
%
% Notes:
% solves the following problem via ADMM for x:
% minimize 1/2*sum(huber(A*x - y))
%
% Based on the ADMM Matlab codes also found at:
% https://web.stanford.edu/~boyd/papers/admm_distr_stats.html
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2013-03-04
if ~exist('rho','var')
rho = 1; end
if ~exist('iters','var')
iters = 1000; end
x_offset = min(A(:, 2));
A(:, 2) = A(:, 2) - x_offset;
Aty = A'*y;
L = chol( A'*A, 'lower' );
L = sparse(L);
U = sparse(L');
z = zeros(size(y)); u = z;
for k = 1:iters
x = U \ (L \ (Aty + A'*(z - u)));
d = A*x - y + u;
z = rho/(1+rho)*d + 1/(1+rho)*max(0,(1-(1+1/rho)./abs(d))).*d;
u = d - z;
end
x(1) = x(1) - x(2)*x_offset;
end
function res = hlp_superimposedata(varargin)
% Merge multiple partially populated data structures into one fully populated one.
% Result = hlp_superimposedata(Data1, Data2, Data3, ...)
%
% The function is applicable when you have cell arrays or structs/struct arrays with non-overlapping
% patterns of non-empty entries, where all entries should be merged into a single data structure
% which retains their original positions. If entries exist in multiple data structures at the same
% location, entries of later items will be ignored (i.e. earlier data structures take precedence).
%
% In:
% DataK : a data structure that should be super-imposed with the others to form a single data
% structure
%
% Out:
% Result : the resulting data structure
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2011-08-19
% first, compactify the data by removing the empty items
compact = varargin(~cellfun('isempty',varargin));
% start with the last data structure, then merge the remaining data structures into it (in reverse
% order as this avoids having to grow arrays incrementally in typical cases)
res = compact{end};
for k=length(compact)-1:-1:1
res = merge(res,compact{k}); end
end
function A = merge(A,B)
% merge data structures A and B
if iscell(A) && iscell(B)
% make sure that both have the same number of dimensions
if ndims(A) > ndims(B)
B = grow_cell(B,size(A));
elseif ndims(A) < ndims(B)
A = grow_cell(A,size(B));
end
% make sure that both have the same size
if all(size(B)==size(A))
% we're fine
elseif all(size(B)>=size(A))
% A is a minor of B: grow A
A = grow_cell(A,size(B));
elseif all(size(A)>=size(B))
% B is a minor of A: grow B
B = grow_cell(B,size(A));
else
% A and B have mixed sizes... grow both as necessary
M = max(size(A),size(B));
A = grow_cell(A,M);
B = grow_cell(B,M);
end
% find all non-empty elements in B
idx = find(~cellfun(@(x)isequal(x,[]),B));
if ~isempty(idx)
% check if any of these is occupied in A
clean = cellfun('isempty',A(idx));
if ~all(clean)
% merge all conflicting items recursively
conflicts = idx(~clean);
for k=conflicts(:)'
A{k} = merge(A{k},B{k}); end
% and transfer the rest
if any(clean)
A(idx(clean)) = B(idx(clean)); end
else
% transfer all to A
A(idx) = B(idx);
end
end
elseif isstruct(A) && isstruct(B)
% first make sure that both have the same fields
fnA = fieldnames(A);
fnB = fieldnames(B);
if isequal(fnA,fnB)
% we're fine
elseif isequal(sort(fnA),sort(fnB))
% order doesn't match -- impose A's order on B
B = orderfields(B,fnA);
elseif isempty(setdiff(fnA,fnB))
% B has a superset of A's fields: add the remaining fields to A, and order them according to B
remaining = setdiff(fnB,fnA);
for fn = remaining'
A(1).(fn{1}) = []; end
A = orderfields(A,fnB);
elseif isempty(setdiff(fnB,fnA))
% A has a superset of B's fields: add the remaining fields to B, and order them according to A
remaining = setdiff(fnA,fnB);
for fn = remaining'
B(1).(fn{1}) = []; end
B = orderfields(B,fnA);
else
% A and B have incommensurable fields; add B's fields to A's fields, add A's fields to B's
% and order according to A's fields
remainingB = setdiff(fnB,fnA);
for fn = remainingB'
A(1).(fn{1}) = []; end
remainingA = setdiff(fnA,fnB);
for fn = remainingA'
B(1).(fn{1}) = []; end
B = orderfields(B,A);
end
% that being established, convert them to cell arrays, merge their cell arrays, and convert back to structs
merged = merge(struct2cell(A),struct2cell(B));
A = cell2struct(merged,fieldnames(A),1);
elseif isstruct(A) && ~isstruct(B)
if ~isempty(B)
error('One of the sub-items is a struct, and the other one is of a non-struct type.');
else
% we retain A
end
elseif isstruct(B) && ~isstruct(A)
if ~isempty(A)
error('One of the sub-items is a struct, and the other one is of a non-struct type.');
else
% we retain B
A = B;
end
elseif iscell(A) && ~iscell(B)
if ~isempty(B)
error('One of the sub-items is a cell array, and the other one is of a non-cell type.');
else
% we retain A
end
elseif iscell(B) && ~iscell(A)
if ~isempty(A)
error('One of the sub-items is a cell array, and the other one is of a non-cell type.');
else
% we retain B
A = B;
end
elseif isempty(A) && ~isempty(B)
% we retain B