@@ -212,9 +212,9 @@ We design the statement to define node as follows:
212
212
The aforementioned nodes are defined as follows:
213
213
214
214
```
215
- define-node nzero -> value! end
216
- define-node nadd1 prev -> value! end
217
- define-node nadd target! addend -> result end
215
+ define-node nzero -- value! end
216
+ define-node nadd1 prev -- value! end
217
+ define-node nadd target! addend -- result end
218
218
```
219
219
220
220
# 5
@@ -275,9 +275,9 @@ In which we will use `define` to define new words,
275
275
and use ` -- ` to comment a line.
276
276
277
277
```
278
- define-node nzero -> value! end
279
- define-node nadd1 prev -> value! end
280
- define-node nadd target! addend -> result end
278
+ define-node nzero -- value! end
279
+ define-node nadd1 prev -- value! end
280
+ define-node nadd target! addend -- result end
281
281
282
282
define-rule nzero nadd
283
283
( addend result )
@@ -381,7 +381,7 @@ first! second
381
381
Node definition:
382
382
383
383
```
384
- define-node nat-max first! second -> result end
384
+ define-node nat-max first! second -- result end
385
385
```
386
386
387
387
The interaction between ` (nzero) ` and ` (nzero) ` is simple:
@@ -434,7 +434,7 @@ first second!
434
434
Node definition:
435
435
436
436
```
437
- define-node nat-max-aux first second! -> result end
437
+ define-node nat-max-aux first second! -- result end
438
438
```
439
439
440
440
Using the auxiliary node to define
501
501
```
502
502
503
503
```
504
- define-node nat-max first! second -> result end
505
- define-node nat-max-aux first second! -> result end
504
+ define-node nat-max first! second -- result end
505
+ define-node nat-max-aux first second! -- result end
506
506
507
507
define-rule nzero nat-max
508
508
( second result )
@@ -560,7 +560,7 @@ Thus when we want to factor out a subsequence from a sequence of words,
560
560
there will be no complicated syntax preventing us from doing so.
561
561
562
562
```
563
- define-node nat-erase target! -> end
563
+ define-node nat-erase target! -- end
564
564
565
565
define-rule nzero nat-erase end
566
566
@@ -569,7 +569,7 @@ define-rule nadd1 nat-erase
569
569
prev nat-erase
570
570
end
571
571
572
- define-node nat-dup target! -> first second end
572
+ define-node nat-dup target! -- first second end
573
573
574
574
define-rule nzero nat-dup
575
575
( first second )
@@ -585,7 +585,7 @@ define-rule nadd1 nat-dup
585
585
prev-first nadd1 first connect
586
586
end
587
587
588
- define-node nmul target! mulend -> result end
588
+ define-node nmul target! mulend -- result end
589
589
590
590
define-rule nzero nmul
591
591
( mulend result )
@@ -617,9 +617,9 @@ The difference is that the `(nadd1)` of natural number only nadd one node,
617
617
while the ` (cons) ` of list nadd one node and link to an extra node.
618
618
619
619
```
620
- define-node nil -> value! end
621
- define-node cons tail head -> value! end
622
- define-node append target! rest -> result end
620
+ define-node nil -- value! end
621
+ define-node cons tail head -- value! end
622
+ define-node append target! rest -- result end
623
623
624
624
define-rule nil append
625
625
( rest result )
634
634
635
635
-- test
636
636
637
- define-node sole -> value! end
637
+ define-node sole -- value! end
638
638
639
639
nil sole cons sole cons sole cons
640
640
nil sole cons sole cons sole cons
@@ -669,9 +669,9 @@ But in interaction nets,
669
669
the relationship between all nodes is symmetric.
670
670
671
671
```
672
- define-node diff front -> back value! end
673
- define-node diff-append target! rest -> result end
674
- define-node diff-open new-back target! -> old-back end
672
+ define-node diff front -- back value! end
673
+ define-node diff-append target! rest -- result end
674
+ define-node diff-open new-back target! -- old-back end
675
675
676
676
define-rule diff diff-append
677
677
( rest result ) ( front back )
687
687
688
688
-- test
689
689
690
- define-node sole -> value! end
690
+ define-node sole -- value! end
691
691
692
692
define sole-diff-list
693
693
wire-pair ( front front-op )
0 commit comments