-
Notifications
You must be signed in to change notification settings - Fork 204
/
latlon-spherical.js
867 lines (694 loc) · 37 KB
/
latlon-spherical.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Latitude/longitude spherical geodesy tools (c) Chris Veness 2002-2024 */
/* MIT Licence */
/* www.movable-type.co.uk/scripts/latlong.html */
/* www.movable-type.co.uk/scripts/geodesy-library.html#latlon-spherical */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
import Dms from './dms.js';
const π = Math.PI;
/**
* Library of geodesy functions for operations on a spherical earth model.
*
* Includes distances, bearings, destinations, etc, for both great circle paths and rhumb lines,
* and other related functions.
*
* All calculations are done using simple spherical trigonometric formulae.
*
* @module latlon-spherical
*/
// note greek letters (e.g. φ, λ, θ) are used for angles in radians to distinguish from angles in
// degrees (e.g. lat, lon, brng)
/* LatLonSpherical - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Latitude/longitude points on a spherical model earth, and methods for calculating distances,
* bearings, destinations, etc on (orthodromic) great-circle paths and (loxodromic) rhumb lines.
*/
class LatLonSpherical {
/**
* Creates a latitude/longitude point on the earth’s surface, using a spherical model earth.
*
* @param {number} lat - Latitude (in degrees).
* @param {number} lon - Longitude (in degrees).
* @throws {TypeError} Invalid lat/lon.
*
* @example
* import LatLon from '/js/geodesy/latlon-spherical.js';
* const p = new LatLon(52.205, 0.119);
*/
constructor(lat, lon) {
this.lat = lat; // use setter to set lat
this.lon = lon; // use setter to set lon
}
/**
* Latitude in degrees north from equator (including aliases lat, latitude): can be set as
* numeric or hexagesimal (deg-min-sec); returned as numeric.
*/
get lat() { return this._lat; }
get latitude() { return this._lat; }
set lat(lat) {
if (lat == null) throw new TypeError(`invalid lat ‘${lat}’`);
this._lat = isNaN(lat) ? Dms.wrap90(Dms.parse(lat)) : Dms.wrap90(Number(lat));
if (isNaN(this._lat)) throw new TypeError(`invalid lat ‘${lat}’`);
}
set latitude(lat) {
if (lat == null) throw new TypeError(`invalid latitude ‘${lat}’`);
this._lat = isNaN(lat) ? Dms.wrap90(Dms.parse(lat)) : Dms.wrap90(Number(lat));
if (isNaN(this._lat)) throw new TypeError(`invalid latitude ‘${lat}’`);
}
/**
* Longitude in degrees east from international reference meridian (including aliases lon, lng,
* longitude): can be set as numeric or hexagesimal (deg-min-sec); returned as numeric.
*/
get lon() { return this._lon; }
get lng() { return this._lon; }
get longitude() { return this._lon; }
set lon(lon) {
if (lon == null) throw new TypeError(`invalid lon ‘${lon}’`);
this._lon = isNaN(lon) ? Dms.wrap180(Dms.parse(lon)) : Dms.wrap180(Number(lon));
if (isNaN(this._lon)) throw new TypeError(`invalid lon ‘${lon}’`);
}
set lng(lon) {
if (lon == null) throw new TypeError(`invalid lng ‘${lon}’`);
this._lon = isNaN(lon) ? Dms.wrap180(Dms.parse(lon)) : Dms.wrap180(Number(lon));
if (isNaN(this._lon)) throw new TypeError(`invalid lng ‘${lon}’`);
}
set longitude(lon) {
if (lon == null) throw new TypeError(`invalid longitude ‘${lon}’`);
this._lon = isNaN(lon) ? Dms.wrap180(Dms.parse(lon)) : Dms.wrap180(Number(lon));
if (isNaN(this._lon)) throw new TypeError(`invalid longitude ‘${lon}’`);
}
/** Conversion factors; 1000 * LatLon.metresToKm gives 1. */
static get metresToKm() { return 1/1000; }
/** Conversion factors; 1000 * LatLon.metresToMiles gives 0.621371192237334. */
static get metresToMiles() { return 1/1609.344; }
/** Conversion factors; 1000 * LatLon.metresToMiles gives 0.5399568034557236. */
static get metresToNauticalMiles() { return 1/1852; }
/**
* Parses a latitude/longitude point from a variety of formats.
*
* Latitude & longitude (in degrees) can be supplied as two separate parameters, as a single
* comma-separated lat/lon string, or as a single object with { lat, lon } or GeoJSON properties.
*
* The latitude/longitude values may be numeric or strings; they may be signed decimal or
* deg-min-sec (hexagesimal) suffixed by compass direction (NSEW); a variety of separators are
* accepted. Examples -3.62, '3 37 12W', '3°37′12″W'.
*
* Thousands/decimal separators must be comma/dot; use Dms.fromLocale to convert locale-specific
* thousands/decimal separators.
*
* @param {number|string|Object} lat|latlon - Latitude (in degrees) or comma-separated lat/lon or lat/lon object.
* @param {number|string} [lon] - Longitude (in degrees).
* @returns {LatLon} Latitude/longitude point.
* @throws {TypeError} Invalid point.
*
* @example
* const p1 = LatLon.parse(52.205, 0.119); // numeric pair (≡ new LatLon)
* const p2 = LatLon.parse('52.205', '0.119'); // numeric string pair (≡ new LatLon)
* const p3 = LatLon.parse('52.205, 0.119'); // single string numerics
* const p4 = LatLon.parse('52°12′18.0″N', '000°07′08.4″E'); // DMS pair
* const p5 = LatLon.parse('52°12′18.0″N, 000°07′08.4″E'); // single string DMS
* const p6 = LatLon.parse({ lat: 52.205, lon: 0.119 }); // { lat, lon } object numeric
* const p7 = LatLon.parse({ lat: '52°12′18.0″N', lng: '000°07′08.4″E' }); // { lat, lng } object DMS
* const p8 = LatLon.parse({ type: 'Point', coordinates: [ 0.119, 52.205] }); // GeoJSON
*/
static parse(...args) {
if (args.length == 0) throw new TypeError('invalid (empty) point');
if (args[0]===null || args[1]===null) throw new TypeError('invalid (null) point');
let lat=undefined, lon=undefined;
if (args.length == 2) { // regular (lat, lon) arguments
[ lat, lon ] = args;
lat = Dms.wrap90(Dms.parse(lat));
lon = Dms.wrap180(Dms.parse(lon));
if (isNaN(lat) || isNaN(lon)) throw new TypeError(`invalid point ‘${args.toString()}’`);
}
if (args.length == 1 && typeof args[0] == 'string') { // single comma-separated lat,lon string
[ lat, lon ] = args[0].split(',');
lat = Dms.wrap90(Dms.parse(lat));
lon = Dms.wrap180(Dms.parse(lon));
if (isNaN(lat) || isNaN(lon)) throw new TypeError(`invalid point ‘${args[0]}’`);
}
if (args.length == 1 && typeof args[0] == 'object') { // single { lat, lon } object
const ll = args[0];
if (ll.type == 'Point' && Array.isArray(ll.coordinates)) { // GeoJSON
[ lon, lat ] = ll.coordinates;
} else { // regular { lat, lon } object
if (ll.latitude != undefined) lat = ll.latitude;
if (ll.lat != undefined) lat = ll.lat;
if (ll.longitude != undefined) lon = ll.longitude;
if (ll.lng != undefined) lon = ll.lng;
if (ll.lon != undefined) lon = ll.lon;
lat = Dms.wrap90(Dms.parse(lat));
lon = Dms.wrap180(Dms.parse(lon));
}
if (isNaN(lat) || isNaN(lon)) throw new TypeError(`invalid point ‘${JSON.stringify(args[0])}’`);
}
if (isNaN(lat) || isNaN(lon)) throw new TypeError(`invalid point ‘${args.toString()}’`);
return new LatLonSpherical(lat, lon);
}
/**
* Returns the distance along the surface of the earth from ‘this’ point to destination point.
*
* Uses haversine formula: a = sin²(Δφ/2) + cosφ1·cosφ2 · sin²(Δλ/2); d = 2 · atan2(√a, √(a-1)).
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} [radius=6371e3] - Radius of earth (defaults to mean radius in metres).
* @returns {number} Distance between this point and destination point, in same units as radius.
* @throws {TypeError} Invalid radius.
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const d = p1.distanceTo(p2); // 404.3×10³ m
* const m = p1.distanceTo(p2, 3959); // 251.2 miles
*/
distanceTo(point, radius=6371e3) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
if (isNaN(radius)) throw new TypeError(`invalid radius ‘${radius}’`);
// a = sin²(Δφ/2) + cos(φ1)⋅cos(φ2)⋅sin²(Δλ/2)
// δ = 2·atan2(√(a), √(1−a))
// see mathforum.org/library/drmath/view/51879.html for derivation
const R = radius;
const φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
const φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
const Δφ = φ2 - φ1;
const Δλ = λ2 - λ1;
const a = Math.sin(Δφ/2)*Math.sin(Δφ/2) + Math.cos(φ1)*Math.cos(φ2) * Math.sin(Δλ/2)*Math.sin(Δλ/2);
const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
const d = R * c;
return d;
}
/**
* Returns the initial bearing from ‘this’ point to destination point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Initial bearing in degrees from north (0°..360°).
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const b1 = p1.initialBearingTo(p2); // 156.2°
*/
initialBearingTo(point) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
if (this.equals(point)) return NaN; // coincident points
// tanθ = sinΔλ⋅cosφ2 / cosφ1⋅sinφ2 − sinφ1⋅cosφ2⋅cosΔλ
// see mathforum.org/library/drmath/view/55417.html for derivation
const φ1 = this.lat.toRadians();
const φ2 = point.lat.toRadians();
const Δλ = (point.lon - this.lon).toRadians();
const x = Math.cos(φ1) * Math.sin(φ2) - Math.sin(φ1) * Math.cos(φ2) * Math.cos(Δλ);
const y = Math.sin(Δλ) * Math.cos(φ2);
const θ = Math.atan2(y, x);
const bearing = θ.toDegrees();
return Dms.wrap360(bearing);
}
/**
* Returns final bearing arriving at destination point from ‘this’ point; the final bearing will
* differ from the initial bearing by varying degrees according to distance and latitude.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Final bearing in degrees from north (0°..360°).
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const b2 = p1.finalBearingTo(p2); // 157.9°
*/
finalBearingTo(point) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
// get initial bearing from destination point to this point & reverse it by adding 180°
const bearing = point.initialBearingTo(this) + 180;
return Dms.wrap360(bearing);
}
/**
* Returns the midpoint between ‘this’ point and destination point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {LatLon} Midpoint between this point and destination point.
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const pMid = p1.midpointTo(p2); // 50.5363°N, 001.2746°E
*/
midpointTo(point) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
// φm = atan2( sinφ1 + sinφ2, √( (cosφ1 + cosφ2⋅cosΔλ)² + cos²φ2⋅sin²Δλ ) )
// λm = λ1 + atan2(cosφ2⋅sinΔλ, cosφ1 + cosφ2⋅cosΔλ)
// midpoint is sum of vectors to two points: mathforum.org/library/drmath/view/51822.html
const φ1 = this.lat.toRadians();
const λ1 = this.lon.toRadians();
const φ2 = point.lat.toRadians();
const Δλ = (point.lon - this.lon).toRadians();
// get cartesian coordinates for the two points
const A = { x: Math.cos(φ1), y: 0, z: Math.sin(φ1) }; // place point A on prime meridian y=0
const B = { x: Math.cos(φ2)*Math.cos(Δλ), y: Math.cos(φ2)*Math.sin(Δλ), z: Math.sin(φ2) };
// vector to midpoint is sum of vectors to two points (no need to normalise)
const C = { x: A.x + B.x, y: A.y + B.y, z: A.z + B.z };
const φm = Math.atan2(C.z, Math.sqrt(C.x*C.x + C.y*C.y));
const λm = λ1 + Math.atan2(C.y, C.x);
const lat = φm.toDegrees();
const lon = λm.toDegrees();
return new LatLonSpherical(lat, lon);
}
/**
* Returns the point at given fraction between ‘this’ point and given point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} fraction - Fraction between the two points (0 = this point, 1 = specified point).
* @returns {LatLon} Intermediate point between this point and destination point.
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const pInt = p1.intermediatePointTo(p2, 0.25); // 51.3721°N, 000.7073°E
*/
intermediatePointTo(point, fraction) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
if (this.equals(point)) return new LatLonSpherical(this.lat, this.lon); // coincident points
const φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
const φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
// distance between points
const Δφ = φ2 - φ1;
const Δλ = λ2 - λ1;
const a = Math.sin(Δφ/2) * Math.sin(Δφ/2)
+ Math.cos(φ1) * Math.cos(φ2) * Math.sin(Δλ/2) * Math.sin(Δλ/2);
const δ = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
const A = Math.sin((1-fraction)*δ) / Math.sin(δ);
const B = Math.sin(fraction*δ) / Math.sin(δ);
const x = A * Math.cos(φ1) * Math.cos(λ1) + B * Math.cos(φ2) * Math.cos(λ2);
const y = A * Math.cos(φ1) * Math.sin(λ1) + B * Math.cos(φ2) * Math.sin(λ2);
const z = A * Math.sin(φ1) + B * Math.sin(φ2);
const φ3 = Math.atan2(z, Math.sqrt(x*x + y*y));
const λ3 = Math.atan2(y, x);
const lat = φ3.toDegrees();
const lon = λ3.toDegrees();
return new LatLonSpherical(lat, lon);
}
/**
* Returns the destination point from ‘this’ point having travelled the given distance on the
* given initial bearing (bearing normally varies around path followed).
*
* @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
* @param {number} bearing - Initial bearing in degrees from north.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {LatLon} Destination point.
* @throws {TypeError} Invalid distance/bearing/radius.
*
* @example
* const p1 = new LatLon(51.47788, -0.00147);
* const p2 = p1.destinationPoint(7794, 300.7); // 51.5136°N, 000.0983°W
*/
destinationPoint(distance, bearing, radius=6371e3) {
if (isNaN(distance)) throw new TypeError(`invalid distance ‘${distance}’`);
if (isNaN(bearing)) throw new TypeError(`invalid bearing ‘${bearing}’`);
if (isNaN(radius)) throw new TypeError(`invalid radius ‘${radius}’`);
// sinφ2 = sinφ1⋅cosδ + cosφ1⋅sinδ⋅cosθ
// tanΔλ = sinθ⋅sinδ⋅cosφ1 / cosδ−sinφ1⋅sinφ2
// see mathforum.org/library/drmath/view/52049.html for derivation
const δ = distance / radius; // angular distance in radians
const θ = Number(bearing).toRadians();
const φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
const sinφ2 = Math.sin(φ1) * Math.cos(δ) + Math.cos(φ1) * Math.sin(δ) * Math.cos(θ);
const φ2 = Math.asin(sinφ2);
const y = Math.sin(θ) * Math.sin(δ) * Math.cos(φ1);
const x = Math.cos(δ) - Math.sin(φ1) * sinφ2;
const λ2 = λ1 + Math.atan2(y, x);
const lat = φ2.toDegrees();
const lon = λ2.toDegrees();
return new LatLonSpherical(lat, lon);
}
/**
* Returns the point of intersection of two paths defined by point and bearing.
*
* @param {LatLon} p1 - First point.
* @param {number} brng1 - Initial bearing from first point.
* @param {LatLon} p2 - Second point.
* @param {number} brng2 - Initial bearing from second point.
* @returns {LatLon|null} Destination point (null if no unique intersection defined).
*
* @example
* const p1 = new LatLon(51.8853, 0.2545), brng1 = 108.547;
* const p2 = new LatLon(49.0034, 2.5735), brng2 = 32.435;
* const pInt = LatLon.intersection(p1, brng1, p2, brng2); // 50.9078°N, 004.5084°E
*/
static intersection(p1, brng1, p2, brng2) {
if (!(p1 instanceof LatLonSpherical)) p1 = LatLonSpherical.parse(p1); // allow literal forms
if (!(p2 instanceof LatLonSpherical)) p2 = LatLonSpherical.parse(p2); // allow literal forms
if (isNaN(brng1)) throw new TypeError(`invalid brng1 ‘${brng1}’`);
if (isNaN(brng2)) throw new TypeError(`invalid brng2 ‘${brng2}’`);
// see www.edwilliams.org/avform.htm#Intersection
const φ1 = p1.lat.toRadians(), λ1 = p1.lon.toRadians();
const φ2 = p2.lat.toRadians(), λ2 = p2.lon.toRadians();
const θ13 = Number(brng1).toRadians(), θ23 = Number(brng2).toRadians();
const Δφ = φ2 - φ1, Δλ = λ2 - λ1;
// angular distance p1-p2
const δ12 = 2 * Math.asin(Math.sqrt(Math.sin(Δφ/2) * Math.sin(Δφ/2)
+ Math.cos(φ1) * Math.cos(φ2) * Math.sin(Δλ/2) * Math.sin(Δλ/2)));
if (Math.abs(δ12) < Number.EPSILON) return new LatLonSpherical(p1.lat, p1.lon); // coincident points
// initial/final bearings between points
const cosθa = (Math.sin(φ2) - Math.sin(φ1)*Math.cos(δ12)) / (Math.sin(δ12)*Math.cos(φ1));
const cosθb = (Math.sin(φ1) - Math.sin(φ2)*Math.cos(δ12)) / (Math.sin(δ12)*Math.cos(φ2));
const θa = Math.acos(Math.min(Math.max(cosθa, -1), 1)); // protect against rounding errors
const θb = Math.acos(Math.min(Math.max(cosθb, -1), 1)); // protect against rounding errors
const θ12 = Math.sin(λ2-λ1)>0 ? θa : 2*π-θa;
const θ21 = Math.sin(λ2-λ1)>0 ? 2*π-θb : θb;
const α1 = θ13 - θ12; // angle 2-1-3
const α2 = θ21 - θ23; // angle 1-2-3
if (Math.sin(α1) == 0 && Math.sin(α2) == 0) return null; // infinite intersections
if (Math.sin(α1) * Math.sin(α2) < 0) return null; // ambiguous intersection (antipodal/360°)
const cosα3 = -Math.cos(α1)*Math.cos(α2) + Math.sin(α1)*Math.sin(α2)*Math.cos(δ12);
const δ13 = Math.atan2(Math.sin(δ12)*Math.sin(α1)*Math.sin(α2), Math.cos(α2) + Math.cos(α1)*cosα3);
const φ3 = Math.asin(Math.min(Math.max(Math.sin(φ1)*Math.cos(δ13) + Math.cos(φ1)*Math.sin(δ13)*Math.cos(θ13), -1), 1));
const Δλ13 = Math.atan2(Math.sin(θ13)*Math.sin(δ13)*Math.cos(φ1), Math.cos(δ13) - Math.sin(φ1)*Math.sin(φ3));
const λ3 = λ1 + Δλ13;
const lat = φ3.toDegrees();
const lon = λ3.toDegrees();
return new LatLonSpherical(lat, lon);
}
/**
* Returns (signed) distance from ‘this’ point to great circle defined by start-point and
* end-point.
*
* @param {LatLon} pathStart - Start point of great circle path.
* @param {LatLon} pathEnd - End point of great circle path.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance to great circle (-ve if to left, +ve if to right of path).
*
* @example
* const pCurrent = new LatLon(53.2611, -0.7972);
* const p1 = new LatLon(53.3206, -1.7297);
* const p2 = new LatLon(53.1887, 0.1334);
* const d = pCurrent.crossTrackDistanceTo(p1, p2); // -307.5 m
*/
crossTrackDistanceTo(pathStart, pathEnd, radius=6371e3) {
if (!(pathStart instanceof LatLonSpherical)) pathStart = LatLonSpherical.parse(pathStart); // allow literal forms
if (!(pathEnd instanceof LatLonSpherical)) pathEnd = LatLonSpherical.parse(pathEnd); // allow literal forms
const R = radius;
if (this.equals(pathStart)) return 0;
const δ13 = pathStart.distanceTo(this, R) / R;
const θ13 = pathStart.initialBearingTo(this).toRadians();
const θ12 = pathStart.initialBearingTo(pathEnd).toRadians();
const δxt = Math.asin(Math.sin(δ13) * Math.sin(θ13 - θ12));
return δxt * R;
}
/**
* Returns how far ‘this’ point is along a path from from start-point, heading towards end-point.
* That is, if a perpendicular is drawn from ‘this’ point to the (great circle) path, the
* along-track distance is the distance from the start point to where the perpendicular crosses
* the path.
*
* @param {LatLon} pathStart - Start point of great circle path.
* @param {LatLon} pathEnd - End point of great circle path.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance along great circle to point nearest ‘this’ point.
*
* @example
* const pCurrent = new LatLon(53.2611, -0.7972);
* const p1 = new LatLon(53.3206, -1.7297);
* const p2 = new LatLon(53.1887, 0.1334);
* const d = pCurrent.alongTrackDistanceTo(p1, p2); // 62.331 km
*/
alongTrackDistanceTo(pathStart, pathEnd, radius=6371e3) {
if (!(pathStart instanceof LatLonSpherical)) pathStart = LatLonSpherical.parse(pathStart); // allow literal forms
if (!(pathEnd instanceof LatLonSpherical)) pathEnd = LatLonSpherical.parse(pathEnd); // allow literal forms
const R = radius;
if (this.equals(pathStart)) return 0;
const δ13 = pathStart.distanceTo(this, R) / R;
const θ13 = pathStart.initialBearingTo(this).toRadians();
const θ12 = pathStart.initialBearingTo(pathEnd).toRadians();
const δxt = Math.asin(Math.sin(δ13) * Math.sin(θ13-θ12));
const δat = Math.acos(Math.cos(δ13) / Math.abs(Math.cos(δxt)));
return δat*Math.sign(Math.cos(θ12-θ13)) * R;
}
/**
* Returns maximum latitude reached when travelling on a great circle on given bearing from
* ‘this’ point (‘Clairaut’s formula’). Negate the result for the minimum latitude (in the
* southern hemisphere).
*
* The maximum latitude is independent of longitude; it will be the same for all points on a
* given latitude.
*
* @param {number} bearing - Initial bearing.
* @returns {number} Maximum latitude reached.
*/
maxLatitude(bearing) {
const θ = Number(bearing).toRadians();
const φ = this.lat.toRadians();
const φMax = Math.acos(Math.abs(Math.sin(θ) * Math.cos(φ)));
return φMax.toDegrees();
}
/**
* Returns the pair of meridians at which a great circle defined by two points crosses the given
* latitude. If the great circle doesn't reach the given latitude, null is returned.
*
* @param {LatLon} point1 - First point defining great circle.
* @param {LatLon} point2 - Second point defining great circle.
* @param {number} latitude - Latitude crossings are to be determined for.
* @returns {Object|null} Object containing { lon1, lon2 } or null if given latitude not reached.
*/
static crossingParallels(point1, point2, latitude) {
if (point1.equals(point2)) return null; // coincident points
const φ = Number(latitude).toRadians();
const φ1 = point1.lat.toRadians();
const λ1 = point1.lon.toRadians();
const φ2 = point2.lat.toRadians();
const λ2 = point2.lon.toRadians();
const Δλ = λ2 - λ1;
const x = Math.sin(φ1) * Math.cos(φ2) * Math.cos(φ) * Math.sin(Δλ);
const y = Math.sin(φ1) * Math.cos(φ2) * Math.cos(φ) * Math.cos(Δλ) - Math.cos(φ1) * Math.sin(φ2) * Math.cos(φ);
const z = Math.cos(φ1) * Math.cos(φ2) * Math.sin(φ) * Math.sin(Δλ);
if (z * z > x * x + y * y) return null; // great circle doesn't reach latitude
const λm = Math.atan2(-y, x); // longitude at max latitude
const Δλi = Math.acos(z / Math.sqrt(x*x + y*y)); // Δλ from λm to intersection points
const λi1 = λ1 + λm - Δλi;
const λi2 = λ1 + λm + Δλi;
const lon1 = λi1.toDegrees();
const lon2 = λi2.toDegrees();
return {
lon1: Dms.wrap180(lon1),
lon2: Dms.wrap180(lon2),
};
}
/* Rhumb - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the distance travelling from ‘this’ point to destination point along a rhumb line.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance in km between this point and destination point (same units as radius).
*
* @example
* const p1 = new LatLon(51.127, 1.338);
* const p2 = new LatLon(50.964, 1.853);
* const d = p1.distanceTo(p2); // 40.31 km
*/
rhumbDistanceTo(point, radius=6371e3) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
// see www.edwilliams.org/avform.htm#Rhumb
const R = radius;
const φ1 = this.lat.toRadians();
const φ2 = point.lat.toRadians();
const Δφ = φ2 - φ1;
let Δλ = Math.abs(point.lon - this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (Math.abs(Δλ) > π) Δλ = Δλ > 0 ? -(2 * π - Δλ) : (2 * π + Δλ);
// on Mercator projection, longitude distances shrink by latitude; q is the 'stretch factor'
// q becomes ill-conditioned along E-W line (0/0); use empirical tolerance to avoid it (note ε is too small)
const Δψ = Math.log(Math.tan(φ2 / 2 + π / 4) / Math.tan(φ1 / 2 + π / 4));
const q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : Math.cos(φ1);
// distance is pythagoras on 'stretched' Mercator projection, √(Δφ² + q²·Δλ²)
const δ = Math.sqrt(Δφ*Δφ + q*q * Δλ*Δλ); // angular distance in radians
const d = δ * R;
return d;
}
/**
* Returns the bearing from ‘this’ point to destination point along a rhumb line.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Bearing in degrees from north.
*
* @example
* const p1 = new LatLon(51.127, 1.338);
* const p2 = new LatLon(50.964, 1.853);
* const d = p1.rhumbBearingTo(p2); // 116.7°
*/
rhumbBearingTo(point) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
if (this.equals(point)) return NaN; // coincident points
const φ1 = this.lat.toRadians();
const φ2 = point.lat.toRadians();
let Δλ = (point.lon - this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (Math.abs(Δλ) > π) Δλ = Δλ > 0 ? -(2 * π - Δλ) : (2 * π + Δλ);
const Δψ = Math.log(Math.tan(φ2 / 2 + π / 4) / Math.tan(φ1 / 2 + π / 4));
const θ = Math.atan2(Δλ, Δψ);
const bearing = θ.toDegrees();
return Dms.wrap360(bearing);
}
/**
* Returns the destination point having travelled along a rhumb line from ‘this’ point the given
* distance on the given bearing.
*
* @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
* @param {number} bearing - Bearing in degrees from north.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {LatLon} Destination point.
*
* @example
* const p1 = new LatLon(51.127, 1.338);
* const p2 = p1.rhumbDestinationPoint(40300, 116.7); // 50.9642°N, 001.8530°E
*/
rhumbDestinationPoint(distance, bearing, radius=6371e3) {
const φ1 = this.lat.toRadians(), λ1 = this.lon.toRadians();
const θ = Number(bearing).toRadians();
const δ = distance / radius; // angular distance in radians
const Δφ = δ * Math.cos(θ);
let φ2 = φ1 + Δφ;
// check for some daft bugger going past the pole, normalise latitude if so
if (Math.abs(φ2) > π / 2) φ2 = φ2 > 0 ? π - φ2 : -π - φ2;
const Δψ = Math.log(Math.tan(φ2 / 2 + π / 4) / Math.tan(φ1 / 2 + π / 4));
const q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : Math.cos(φ1); // E-W course becomes ill-conditioned with 0/0
const Δλ = δ * Math.sin(θ) / q;
const λ2 = λ1 + Δλ;
const lat = φ2.toDegrees();
const lon = λ2.toDegrees();
return new LatLonSpherical(lat, lon);
}
/**
* Returns the loxodromic midpoint (along a rhumb line) between ‘this’ point and second point.
*
* @param {LatLon} point - Latitude/longitude of second point.
* @returns {LatLon} Midpoint between this point and second point.
*
* @example
* const p1 = new LatLon(51.127, 1.338);
* const p2 = new LatLon(50.964, 1.853);
* const pMid = p1.rhumbMidpointTo(p2); // 51.0455°N, 001.5957°E
*/
rhumbMidpointTo(point) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
// see mathforum.org/kb/message.jspa?messageID=148837
const φ1 = this.lat.toRadians(); let λ1 = this.lon.toRadians();
const φ2 = point.lat.toRadians(), λ2 = point.lon.toRadians();
if (Math.abs(λ2 - λ1) > π) λ1 += 2 * π; // crossing anti-meridian
const φ3 = (φ1 + φ2) / 2;
const f1 = Math.tan(π / 4 + φ1 / 2);
const f2 = Math.tan(π / 4 + φ2 / 2);
const f3 = Math.tan(π / 4 + φ3 / 2);
let λ3 = ((λ2 - λ1) * Math.log(f3) + λ1 * Math.log(f2) - λ2 * Math.log(f1)) / Math.log(f2 / f1);
if (!isFinite(λ3)) λ3 = (λ1 + λ2) / 2; // parallel of latitude
const lat = φ3.toDegrees();
const lon = λ3.toDegrees();
return new LatLonSpherical(lat, lon);
}
/* Area - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Calculates the area of a spherical polygon where the sides of the polygon are great circle
* arcs joining the vertices.
*
* @param {LatLon[]} polygon - Array of points defining vertices of the polygon.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} The area of the polygon in the same units as radius.
*
* @example
* const polygon = [new LatLon(0,0), new LatLon(1,0), new LatLon(0,1)];
* const area = LatLon.areaOf(polygon); // 6.18e9 m²
*/
static areaOf(polygon, radius=6371e3) {
// uses method due to Karney: osgeo-org.1560.x6.nabble.com/Area-of-a-spherical-polygon-td3841625.html;
// for each edge of the polygon, tan(E/2) = tan(Δλ/2)·(tan(φ₁/2)+tan(φ₂/2)) / (1+tan(φ₁/2)·tan(φ₂/2))
// where E is the spherical excess of the trapezium obtained by extending the edge to the equator
// (Karney's method is probably more efficient than the more widely known L’Huilier’s Theorem)
const R = radius;
// close polygon so that last point equals first point
const closed = polygon[0].equals(polygon[polygon.length-1]);
if (!closed) polygon.push(polygon[0]);
const nVertices = polygon.length - 1;
let S = 0; // spherical excess in steradians
for (let v=0; v<nVertices; v++) {
const φ1 = polygon[v].lat.toRadians();
const φ2 = polygon[v+1].lat.toRadians();
const Δλ = (polygon[v+1].lon - polygon[v].lon).toRadians();
const E = 2 * Math.atan2(Math.tan(Δλ/2) * (Math.tan(φ1/2)+Math.tan(φ2/2)), 1 + Math.tan(φ1/2)*Math.tan(φ2/2));
S += E;
}
if (isPoleEnclosedBy(polygon)) S = Math.abs(S) - 2*π;
const A = Math.abs(S * R*R); // area in units of R
if (!closed) polygon.pop(); // restore polygon to pristine condition
return A;
// returns whether polygon encloses pole: sum of course deltas around pole is 0° rather than
// normal ±360°: blog.element84.com/determining-if-a-spherical-polygon-contains-a-pole.html
function isPoleEnclosedBy(p) {
// TODO: any better test than this?
let ΣΔ = 0;
let prevBrng = p[0].initialBearingTo(p[1]);
for (let v=0; v<p.length-1; v++) {
const initBrng = p[v].initialBearingTo(p[v+1]);
const finalBrng = p[v].finalBearingTo(p[v+1]);
ΣΔ += (initBrng - prevBrng + 540) % 360 - 180;
ΣΔ += (finalBrng - initBrng + 540) % 360 - 180;
prevBrng = finalBrng;
}
const initBrng = p[0].initialBearingTo(p[1]);
ΣΔ += (initBrng - prevBrng + 540) % 360 - 180;
// TODO: fix (intermittant) edge crossing pole - eg (85,90), (85,0), (85,-90)
const enclosed = Math.abs(ΣΔ) < 90; // 0°-ish
return enclosed;
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Checks if another point is equal to ‘this’ point.
*
* @param {LatLon} point - Point to be compared against this point.
* @returns {bool} True if points have identical latitude and longitude values.
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(52.205, 0.119);
* const equal = p1.equals(p2); // true
*/
equals(point) {
if (!(point instanceof LatLonSpherical)) point = LatLonSpherical.parse(point); // allow literal forms
if (Math.abs(this.lat - point.lat) > Number.EPSILON) return false;
if (Math.abs(this.lon - point.lon) > Number.EPSILON) return false;
return true;
}
/**
* Converts ‘this’ point to a GeoJSON object.
*
* @returns {Object} this point as a GeoJSON ‘Point’ object.
*/
toGeoJSON() {
return { type: 'Point', coordinates: [ this.lon, this.lat ] };
}
/**
* Returns a string representation of ‘this’ point, formatted as degrees, degrees+minutes, or
* degrees+minutes+seconds.
*
* @param {string} [format=d] - Format point as 'd', 'dm', 'dms', or 'n' for signed numeric.
* @param {number} [dp=4|2|0] - Number of decimal places to use: default 4 for d, 2 for dm, 0 for dms.
* @returns {string} Comma-separated formatted latitude/longitude.
* @throws {RangeError} Invalid format.
*
* @example
* const greenwich = new LatLon(51.47788, -0.00147);
* const d = greenwich.toString(); // 51.4779°N, 000.0015°W
* const dms = greenwich.toString('dms', 2); // 51°28′40.37″N, 000°00′05.29″W
* const [lat, lon] = greenwich.toString('n').split(','); // 51.4779, -0.0015
*/
toString(format='d', dp=undefined) {
// note: explicitly set dp to undefined for passing through to toLat/toLon
if (![ 'd', 'dm', 'dms', 'n' ].includes(format)) throw new RangeError(`invalid format ‘${format}’`);
if (format == 'n') { // signed numeric degrees
if (dp == undefined) dp = 4;
return `${this.lat.toFixed(dp)},${this.lon.toFixed(dp)}`;
}
const lat = Dms.toLat(this.lat, format, dp);
const lon = Dms.toLon(this.lon, format, dp);
return `${lat}, ${lon}`;
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
export { LatLonSpherical as default, Dms };