-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
272 lines (243 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
This example is largely adapted from https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
import os
import random
import argparse
import numpy as np
from collections import OrderedDict
import pytorch_lightning as pl
from pytorch_lightning.core import LightningModule
from pytorch_lightning import loggers
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torchvision.transforms as transforms
import intrinsics_utils
from loss_fn import DMPLoss
from dataloader import DepthMotionDataset
from depth_prediction_net import DispNetS
from object_motion_net import MotionVectorNet
rsize_factor = (128,416)
class DepthMotionLightningModel(LightningModule):
def __init__(self, hparams):
super(DepthMotionLightningModel, self).__init__()
self.default_loss_weights = {
'rgb_consistency': 1.0,
'ssim': 3.0,
'depth_consistency': 0.05,
'depth_smoothing': 0.05,
'rotation_cycle_consistency': 1e-3,
'translation_cycle_consistency': 5e-2,
'depth_variance': 0.0,
'motion_smoothing': 1.0,
'motion_drift': 0.2,
}
self.hparams = hparams
self.motion_field_burning_steps = 20000
self.depth_net = DispNetS()
intrinsics_mat = None
if self.hparams.intrinsics:
intrinsics_mat = np.loadtxt('./intrinsics.txt', delimiter=',')
intrinsics_mat = intrinsics_mat.reshape(3, 3)
self.object_motion_net = MotionVectorNet(auto_mask=True,
intrinsics=self.hparams.intrinsics, intrinsics_mat=intrinsics_mat)
self.loss_func = DMPLoss(self.default_loss_weights)
self.delete_file = True
train_batches = len(self.train_dataloader())
self.base_step = (train_batches) // self.hparams.accumulate_grad_batches
# torch.autograd.set_detect_anomaly(True)
def forward(self, x, step, train=False):
endpoints = {}
rgb_seq_images = x
rgb_images = torch.cat((rgb_seq_images[0], rgb_seq_images[1]), dim=0)
depth_images = self.depth_net(rgb_images)
depth_seq_images = torch.split(depth_images, depth_images.shape[0] // 2, dim=0)
endpoints['predicted_depth'] = depth_seq_images
endpoints['rgb'] = rgb_seq_images
motion_features = [
torch.cat((endpoints['rgb'][0],
endpoints['predicted_depth'][0]), dim=1),
torch.cat((endpoints['rgb'][1],
endpoints['predicted_depth'][1]), dim=1)]
motion_features_stack = torch.cat(motion_features, dim=0)
flipped_motion_features_stack = torch.cat(motion_features[::-1], dim=0)
pairs = torch.cat([motion_features_stack,
flipped_motion_features_stack], dim=1)
rot, trans, residual_translation, intrinsics_mat = \
self.object_motion_net(pairs)
if train and self.motion_field_burning_steps > 0.0:
step = self.base_step * self.current_epoch
step = torch.tensor(step).type(torch.FloatTensor)
burnin_steps = torch.tensor(self.motion_field_burning_steps).type(
torch.FloatTensor)
residual_translation *= torch.clamp(2 * step / burnin_steps - 1, 0.0,
1.0)
endpoints['residual_translation'] = torch.split(residual_translation,
residual_translation.shape[0] // 2, dim=0)
endpoints['background_translation'] = torch.split(trans,
trans.shape[0] // 2, dim=0)
endpoints['rotation'] = torch.split(rot, rot.shape[0] // 2, dim=0)
intrinsics_mat = 0.5 * sum(
torch.split(intrinsics_mat,
intrinsics_mat.shape[0] // 2, dim=0))
endpoints['intrinsics_mat'] = [intrinsics_mat] * 2
endpoints['intrinsics_mat_inv'] = [
intrinsics_utils.invert_intrinsics_matrix(intrinsics_mat)] * 2
return endpoints
def training_step(self, batch, batch_idx):
endpoints = self.forward(batch, batch_idx, train=True)
self.logger
loss_val = self.loss_func(endpoints)
if self.trainer.use_dp or self.trainer.use_ddp2:
loss_val = loss_val.unsqueeze(0)
tqdm_dict = {'train_loss': loss_val}
outputs = OrderedDict({
'loss': loss_val,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return outputs
def validation_step(self, batch, batch_idx):
endpoints = self.forward(batch, batch_idx, train=False)
loss_val = self.loss_func(endpoints)
if self.trainer.use_dp or self.trainer.use_ddp2:
loss_val = loss_val.unsqueeze(0)
outputs = OrderedDict({
'val_loss': loss_val,
})
return outputs
def validation_epoch_end(self, outputs):
tqdm_dict = {}
for metric_name in ["val_loss"]:
metric_total = 0
for output in outputs:
metric_value = output[metric_name]
# reduce manually when using dp
if self.trainer.use_dp or self.trainer.use_ddp2:
metric_value = torch.mean(metric_value)
metric_total += metric_value
tqdm_dict[metric_name] = metric_total / len(outputs)
result = {'progress_bar': tqdm_dict, 'log': tqdm_dict, 'val_loss': tqdm_dict["val_loss"]}
return result
def configure_optimizers(self):
optimizer = optim.Adam(
self.parameters(),
lr=self.hparams.lr,
weight_decay=self.hparams.weight_decay
)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.8, patience=5)
return [optimizer], [scheduler]
def train_dataloader(self):
train_dataset = DepthMotionDataset(mode='train', transform=transforms.Compose([
transforms.Resize(size=rsize_factor),
transforms.ToTensor(),
]),
root_dir='./',
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=self.hparams.batch_size,
shuffle=False,
num_workers=8,
drop_last = False,
sampler=None,
pin_memory=False,
)
print ("Total train example : {}".format((len(train_loader.dataset))))
return train_loader
def val_dataloader(self):
val_dataset = DepthMotionDataset(mode='valid', transform=transforms.Compose([
transforms.Resize(size=rsize_factor),
transforms.ToTensor(),
]),
root_dir='./',
)
val_loader = torch.utils.data.DataLoader(
dataset=val_dataset,
batch_size=self.hparams.batch_size,
shuffle=False,
num_workers=8,
drop_last = False,
sampler=None,
pin_memory=False,
)
print ("Total valid example : {}".format((len(val_loader.dataset))))
return val_loader
@staticmethod
def add_model_specific_args(parent_parser):
parser = argparse.ArgumentParser(parents=[parent_parser])
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--seed', type=int, default=42,
help='seed for initializing training. ')
parser.add_argument('-b', '--batch-size', default=8, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=1e-4, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--intrinsics', dest='intrinsics', action='store_true',
help='use specified intrinsics')
return parser
def get_args():
parent_parser = argparse.ArgumentParser(add_help=False)
parent_parser.add_argument('--gpus', type=int, default=0,
help='how many gpus')
parent_parser.add_argument('--distributed-backend', type=str, default='dp', choices=('dp', 'ddp', 'ddp2'),
help='supports three options dp, ddp, ddp2')
parent_parser.add_argument('--use-16bit', dest='use_16bit', action='store_true',
help='if true uses 16 bit precision')
parent_parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parent_parser.add_argument('-cf', '--clear-folder', dest='clear_folder', action='store_true',
help='clear the folder')
parent_parser.add_argument('-agb', '--accumulate-grad-batches', dest='accumulate_grad_batches',type=int,
default=4)
parser = DepthMotionLightningModel.add_model_specific_args(parent_parser)
return parser.parse_args()
def main(hparams):
model = DepthMotionLightningModel(hparams)
if hparams.seed is not None:
random.seed(hparams.seed)
torch.manual_seed(hparams.seed)
cudnn.deterministic = True
logger = TensorBoardLogger('./logs') # Log files will be stored in this directory.
save_path="./checkpoints/" # Checkpoints will be stored in this directory.
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(save_path, '{val_loss:.3f}'),
save_top_k=1,
verbose=True,
monitor='val_loss',
mode='min',
period=1
)
trainer = pl.Trainer(
default_root_dir=save_path,
checkpoint_callback=checkpoint_callback,
gpus=hparams.gpus,
max_epochs=hparams.epochs,
distributed_backend=hparams.distributed_backend,
use_amp=hparams.use_16bit,
benchmark=True,
accumulate_grad_batches=hparams.accumulate_grad_batches,
logger=logger,
gradient_clip_val=10.0,
)
if hparams.evaluate:
trainer.run_evaluation()
else:
trainer.fit(model)
if __name__ == '__main__':
main(get_args())