-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdepth_prediction_net.py
155 lines (122 loc) · 6.15 KB
/
depth_prediction_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, zeros_
def downsample_conv(in_planes, out_planes, kernel_size=3):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=2, padding=(kernel_size-1)//2),
nn.ReLU(inplace=True),
nn.Conv2d(out_planes, out_planes, kernel_size=kernel_size, padding=(kernel_size-1)//2),
nn.ReLU(inplace=True)
)
def predict_disp(in_planes):
return nn.Sequential(
nn.Conv2d(in_planes, 1, kernel_size=3, padding=1),
nn.Sigmoid()
)
def predict_disp_softplus(in_planes):
return nn.Sequential(
nn.Conv2d(in_planes, 1, kernel_size=3, padding=1),
nn.Softplus()
)
def conv(in_planes, out_planes):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def upconv(in_planes, out_planes):
return nn.Sequential(
nn.ConvTranspose2d(in_planes, out_planes, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(inplace=True)
)
def crop_like(input, ref):
assert( input.size(2) >= ref.size(2) and input.size(3) >= ref.size(3) )
return input[:, :, :ref.size(2), :ref.size(3)]
class DispNetS(nn.Module):
def __init__(self, alpha=10, beta=0.01):
super(DispNetS, self).__init__()
self.alpha = alpha
self.beta = beta
conv_planes = [32, 64, 128, 256, 512, 512, 512]
self.conv1 = downsample_conv(3, conv_planes[0], kernel_size=7)
self.conv2 = downsample_conv(conv_planes[0], conv_planes[1], kernel_size=5)
self.conv3 = downsample_conv(conv_planes[1], conv_planes[2])
self.conv4 = downsample_conv(conv_planes[2], conv_planes[3])
self.conv5 = downsample_conv(conv_planes[3], conv_planes[4])
self.conv6 = downsample_conv(conv_planes[4], conv_planes[5])
self.conv7 = downsample_conv(conv_planes[5], conv_planes[6])
upconv_planes = [512, 512, 256, 128, 64, 32, 16]
self.upconv7 = upconv(conv_planes[6], upconv_planes[0])
self.upconv6 = upconv(upconv_planes[0], upconv_planes[1])
self.upconv5 = upconv(upconv_planes[1], upconv_planes[2])
self.upconv4 = upconv(upconv_planes[2], upconv_planes[3])
self.upconv3 = upconv(upconv_planes[3], upconv_planes[4])
self.upconv2 = upconv(upconv_planes[4], upconv_planes[5])
self.upconv1 = upconv(upconv_planes[5], upconv_planes[6])
self.iconv7 = conv(upconv_planes[0] + conv_planes[5], upconv_planes[0])
self.iconv6 = conv(upconv_planes[1] + conv_planes[4], upconv_planes[1])
self.iconv5 = conv(upconv_planes[2] + conv_planes[3], upconv_planes[2])
self.iconv4 = conv(upconv_planes[3] + conv_planes[2], upconv_planes[3])
self.iconv3 = conv(1 + upconv_planes[4] + conv_planes[1], upconv_planes[4])
self.iconv2 = conv(1 + upconv_planes[5] + conv_planes[0], upconv_planes[5])
self.iconv1 = conv(1 + upconv_planes[6], upconv_planes[6])
self.predict_disp4 = predict_disp(upconv_planes[3])
self.predict_disp3 = predict_disp(upconv_planes[4])
self.predict_disp2 = predict_disp(upconv_planes[5])
self.predict_disp1 = predict_disp_softplus(upconv_planes[6])
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
xavier_uniform_(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward(self, x):
out_conv1 = self.conv1(x)
out_conv2 = self.conv2(out_conv1)
out_conv3 = self.conv3(out_conv2)
out_conv4 = self.conv4(out_conv3)
out_conv5 = self.conv5(out_conv4)
out_conv6 = self.conv6(out_conv5)
out_conv7 = self.conv7(out_conv6)
out_upconv7 = crop_like(self.upconv7(out_conv7), out_conv6)
concat7 = torch.cat((out_upconv7, out_conv6), 1)
out_iconv7 = self.iconv7(concat7)
out_upconv6 = crop_like(self.upconv6(out_iconv7), out_conv5)
concat6 = torch.cat((out_upconv6, out_conv5), 1)
out_iconv6 = self.iconv6(concat6)
out_upconv5 = crop_like(self.upconv5(out_iconv6), out_conv4)
concat5 = torch.cat((out_upconv5, out_conv4), 1)
out_iconv5 = self.iconv5(concat5)
out_upconv4 = crop_like(self.upconv4(out_iconv5), out_conv3)
concat4 = torch.cat((out_upconv4, out_conv3), 1)
out_iconv4 = self.iconv4(concat4)
disp4 = self.alpha * self.predict_disp4(out_iconv4) + self.beta
out_upconv3 = crop_like(self.upconv3(out_iconv4), out_conv2)
disp4_up = crop_like(F.interpolate(disp4, scale_factor=2, mode='bilinear', align_corners=False), out_conv2)
concat3 = torch.cat((out_upconv3, out_conv2, disp4_up), 1)
out_iconv3 = self.iconv3(concat3)
disp3 = self.alpha * self.predict_disp3(out_iconv3) + self.beta
out_upconv2 = crop_like(self.upconv2(out_iconv3), out_conv1)
disp3_up = crop_like(F.interpolate(disp3, scale_factor=2, mode='bilinear', align_corners=False), out_conv1)
concat2 = torch.cat((out_upconv2, out_conv1, disp3_up), 1)
out_iconv2 = self.iconv2(concat2)
disp2 = self.alpha * self.predict_disp2(out_iconv2) + self.beta
out_upconv1 = crop_like(self.upconv1(out_iconv2), x)
disp2_up = crop_like(
F.interpolate(disp2, scale_factor=2, mode='bilinear', align_corners=False),
x)
concat1 = torch.cat((out_upconv1, disp2_up), 1)
out_iconv1 = self.iconv1(concat1)
disp1 = self.alpha * self.predict_disp1(out_iconv1) + self.beta
# print("disp1 size:", disp1.size() ) # torch.Size([1, 1, 128, 416])
# print("disp2 size:", disp2.size() ) # torch.Size([1, 1, 64, 208])
# print("disp3 size:", disp3.size() ) # torch.Size([1, 1, 32, 104])
# print("disp4 size:", disp4.size() ) # torch.Size([1, 1, 16, 52])
return disp1
if __name__ == "__main__":
x = torch.randn((1,3,128,416))
x = x.to(device='cuda')
m = DispNetS()
m = m.to(device='cuda')
o = m(x)
print(o.device)