This paper has been published to Engineering Applications of Artificial Intelligence.
Paper: EAAI version or arXiv version
This repository contains the source code for SalNAS, which accompanies the research paper titled SalNAS: Saliency-Prediction Neural Architecture Search with Self-Knowledge Distillation. The purpose of this repository is to provide transparency and reproducibility of the research results presented in the paper.
This code is based on the implementation of EML-NET-Saliency, SimpleNet, MSI-Net, EEEA-Net, and AlphaNet.
- Tested on Ubuntu OS version 22.04 LTS
- Tested on Python 3.11.8
- Tested on CUDA 12.3
- Tested on PyTorch 2.2.1 and TorchVision 0.17.1
- Tested on NVIDIA RTX 4090 24 GB
git clone https://github.com/chakkritte/SalNAS/
cd SalNAS
mkdir data
PKD
|__ data
|_ salicon
|_ fixations
|_ saliency
|_ stimuli
|_ mit1003
|_ fixations
|_ saliency
|_ stimuli
|_ cat2000
|_ fixations
|_ saliency
|_ stimuli
|_ pascals
|_ fixations
|_ saliency
|_ stimuli
|_ osie
|_ fixations
|_ saliency
|_ stimuli
conda create -n salnas python=3.11.8
conda activate salnas
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install -r requirements.txt --no-cache-dir
python train_salnas.py --amp --self_kd --no_epochs 20 --t_epochs 10 --loss_mode new --kldiv --cc --nss --output_dir output-selfkd
If you use SalNAS or any part of this research, please cite our paper:
@article{termritthikun2024salnas,
title = "{SalNAS: Efficient Saliency-prediction Neural Architecture Search with self-knowledge distillation}",
journal = {Engineering Applications of Artificial Intelligence},
volume = {136},
pages = {109030},
year = {2024},
issn = {0952-1976},
doi = {https://doi.org/10.1016/j.engappai.2024.109030},
author = {Chakkrit Termritthikun and Ayaz Umer and Suwichaya Suwanwimolkul and Feng Xia and Ivan Lee},
}
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.