-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDMRfinder.R
714 lines (662 loc) · 45.1 KB
/
DMRfinder.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#!/usr/bin/env Rscript
# Updated 12/20/18
# Charles Mordaunt
# This code is to be used on barbera.genomecenter.ucdavis.edu
cat("\n[DMRfinder] A pipeline to identify differentially-methylated regions from whole-genome bisulfite sequencing data\n")
#################################################
# Functions
#################################################
cat("\n[DMRfinder] Loading functions\n\n")
write.bed = function(df,file,header="",name="name") {
# Written by Keith Dunaway
# Generalized write bed function
# Example Output:
# chr1 10469 10470 0.00-1 0 + 0 0 0,0,0
# Area stat as name
# color for direction (hyper = red, hypo = blue)
colnum = 3
if(name %in% colnames(df)) {namedat = df[,name];colnum = 4} else{namedat = rep(".",length(df[,1]))}
if("score" %in% colnames(df)) {score = df$score;colnum = 5} else{score = rep("0",length(df[,1]))}
if("strand" %in% colnames(df)) {strand = df$strand;colnum = 6} else{strand = rep("+",length(df[,1]))}
if("thickStart" %in% colnames(df)) {thickStart = df$thickStart;colnum = 7} else{thickStart = rep("0",length(df[,1]))}
if("thickEnd" %in% colnames(df)) {thickEnd = df$thickEnd;colnum = 8} else{thickEnd = rep("0",length(df[,1]))}
if("itemRgb" %in% colnames(df)) {itemRgb = df$itemRgb;colnum = 9} else{itemRgb = rep("0,0,0",length(df[,1]))}
if("blockCount" %in% colnames(df)) {blockCount = df$blockCount;colnum = 10} else{blockCount = rep("0",length(df[,1]))}
if("blockSizes" %in% colnames(df)) {blockSizes = df$blockSizes;colnum = 11} else{blockSizes = rep("0",length(df[,1]))}
if("blockStarts" %in% colnames(df)) {blockStarts = df$blockStarts;colnum = 12} else{blockStarts = rep("0",length(df[,1]))}
subdf = cbind.data.frame(df$chr,df$start,df$end,namedat,score,strand,thickStart,thickEnd,itemRgb,blockCount,blockSizes,blockStarts)
if(header == ""){
if(length(subdf[,1]) == 1){
write.table(subdf[,1:colnum], file=file, quote=FALSE, sep='\t', col.names = FALSE, row.names=FALSE, eol="\t")
}else{
write.table(subdf[,1:colnum], file=file, quote=FALSE, sep='\t', col.names = FALSE, row.names=FALSE, eol="\n")
}
}else{
if(length(subdf[,1]) == 1){
write(header,file=file)
write.table(subdf[,1:colnum], file=file, quote=FALSE, sep='\t', col.names = FALSE, row.names=FALSE,append=TRUE, eol="\t")
}else{
write(header,file=file)
write.table(subdf[,1:colnum], file=file, quote=FALSE, sep='\t', col.names = FALSE, row.names=FALSE,append=TRUE, eol="\n")
}
}
}
write.dmrs_bed = function(df,file,trackname,genome) {
# Written by Keith Dunaway
# Wrapper function for writing DMR info data.frames as bed files, Area stat as name, color for direction (hyper = red, hypo = blue)
# Takes in DMR info data.frame and formats it for input into write.bed function
df$itemRgb = ifelse(df$direction == "hypo","0,0,255","255,0,0")
headerline = paste("track name=",trackname," description=",trackname," useScore=0 itemRgb=On genome=",genome,sep="")
write.bed(df,file,header=headerline,name="areaStat")
}
print_help_compact <- function (object) {
# Originally written by Trevor Davis as part of optparse package
# Modified by Charles Mordaunt
# Prints help for an Option Parser object, more compact than print_help()
cat(object@usage, fill = TRUE)
cat(object@description, fill = TRUE)
cat("Required arguments:", sep = "\n")
options_list <- object@options
for (ii in 1:6) {
option <- options_list[[ii]]
cat("\t")
if (!is.na(option@short_flag)) cat(option@short_flag, ", ", sep = "")
if (!is.null(option@long_flag)) cat(option@long_flag, " = ", option@help, sep = "")
cat("\n")
}
cat("\nOptional arguments:", sep = "\n")
for (ii in 7:14) {
option <- options_list[[ii]]
cat("\t")
if (!is.na(option@short_flag)) cat(option@short_flag, ", ", sep = "")
if (!is.null(option@long_flag)) cat(option@long_flag, " = ", option@help, sep = "")
cat("\n")
}
cat("\nOutput arguments:", sep = "\n")
for (ii in 15:24) {
option <- options_list[[ii]]
cat("\t")
if (!is.na(option@short_flag)) cat(option@short_flag, ", ", sep = "")
if (!is.null(option@long_flag)) cat(option@long_flag, " = ", option@help, sep = "")
cat("\n")
}
cat(object@epilogue, fill = TRUE, sep = "")
return(invisible(NULL))
}
permuteAll <- function(nperm, design) {
# Written by Kasper Daniel Hansen
# Downloaded from https://github.com/kasperdanielhansen/bsseq/blob/master/R/permutations.R
# Creates an matrix of permutations based on design (number of samples), and nperm (number of permutations)
message(sprintf("[DMRfinder] performing %d unrestricted permutations of the design matrix\n", nperm))
CTRL <- how(nperm = nperm)
idxMatrix <- shuffleSet(n = design, control = CTRL)
}
subsetByMatrix <- function(vec, mat) {
# Written by Kasper Daniel Hansen
# Downloaded from https://github.com/kasperdanielhansen/bsseq/blob/master/R/permutations.R
# Assigns sample names to numbers in permutations
apply(mat, 2, function(xx) vec[xx])
}
getNullDistribution_BSmooth.tstat <- function(BSseq, idxMatrix1, idxMatrix2, estimate.var, local.correct = TRUE, cutoff, stat = "tstat.corrected", maxGap, mc.cores) {
# Originally written by Kasper Daniel Hansen
# Downloaded from https://github.com/kasperdanielhansen/bsseq/blob/master/R/permutations.R
# Modified by Charles Mordaunt
# For each permutation, creates tstat object and finds DMRs, returns a list
stopifnot(nrow(idxMatrix1) == nrow(idxMatrix2))
message(sprintf("[DMRfinder] Performing %d permutations", nrow(idxMatrix1)-1))
nullDist <- lapply(1:nrow(idxMatrix1), function(ii) {
ptime1 <- proc.time()
BS.tstat <- BSmooth.tstat(BSseq, estimate.var = estimate.var, group1 = idxMatrix1[ii,], group2 = idxMatrix2[ii,], local.correct = local.correct,
maxGap = 10^8, verbose = FALSE, mc.cores = mc.cores, qSd = 0.75, k = 101)
dmrs0 <- dmrFinder(BS.tstat, stat = stat, cutoff = cutoff, maxGap = maxGap, verbose = FALSE)
dmrs0$end <- dmrs0$end + 1 #Add 1 base to end to include last CpG
ptime2 <- proc.time()
stime <- (ptime2 - ptime1)[3]
message(sprintf("[DMRfinder] Completing permutation %d in %.1f sec", ii-1, stime))
dmrs0
})
nullDist
}
subsetDmrs <- function(xx, meanDiff, invdensity) {
# Originally written by Kasper Daniel Hansen
# Downloaded from https://github.com/kasperdanielhansen/bsseq/blob/master/R/permutations.R
# Modified by Charles Mordaunt
# Subset Null DMRs for CpGs, meanDiff, and invdensity
if(is.null(xx) || is(xx, "try-error")) return(NULL)
if(length(xx$end) < 1) return(NULL)
out <- xx[ xx[,"n"] >= 3 & abs(xx[, "meanDiff"]) > meanDiff & xx[, "invdensity"] <= invdensity, ]
if(nrow(out) == 0) return(NULL)
out
}
getFWER <- function(null) {
# Originally written by Kasper Daniel Hansen
# Downloaded from https://github.com/kasperdanielhansen/bsseq/blob/master/R/permutations.R
# Modified by Charles Mordaunt
# Calculates FWER from subsetted null DMR list
reference <- null[[1]]
null <- null[-1]
null <- null[!sapply(null, is.null)]
if(!is.null(unlist(null))){
better <- sapply(1:nrow(reference), function(ii) {
areaStat <- abs(reference$areaStat[ii])
n <- reference$n[ii]
out <- sapply(null, function(nulldist) {
any(abs(nulldist$areaStat) >= areaStat & nulldist$n >= n)
})
sum(out)
})
return(better)
} else {
return(rep(0, length(reference[,1])))
}
}
plotGeneTrack2 <- function (gr, geneTrack, cex) {
# Originally written by Kasper Daniel Hansen as part of the bsseq package
# Modified by Charles Mordaunt
# Takes data.frame of gene locations and plots them along with DMRs
geneTrack_gr <- makeGRangesFromDataFrame(geneTrack)
ol <- findOverlaps(geneTrack_gr, gr)
genes <- geneTrack[queryHits(ol), ]
plot(start(gr), rep(1, length(start(gr))), type = "n", xaxt = "n", yaxt = "n", bty = "n", ylim = c(-1.5, 1.5), xlim = c(start(gr), end(gr)),
xlab = "", ylab = "", cex.lab = 4, lheight = 2, cex.axis = 1)
mtext("Genes", side = 2, at = 1.25, las = 1, line = 1, cex = 0.8, adj = 0.75)
mtext("+", side = 2, at = 0.65, las = 1, line = 1, cex = 1, adj = 0)
mtext("-", side = 2, at = -0.45, las = 1, line = 1, cex = 1, adj = 0)
if (nrow(genes) > 0) {
for (g in 1:nrow(genes)) {
geneind2 = which(geneTrack$gene_name == genes$gene_name[g])
geneind2 = min(geneind2)
direction = unique(geneTrack$strand[geneind2])
ES = geneTrack$start[geneind2]
EE = geneTrack$end[geneind2]
Exons = cbind(ES, EE)
if (direction == "+") {
apply(Exons, 1, function(x) polygon(c(x[1], x[2], x[2], x[1]), c(0.45, 0.45, 0.85, 0.85), col = "#000099"))
text((x = max(start(gr), min(ES)) + min(end(gr), max(EE)))/2, y = 1.2, labels = genes$gene_name[g], cex = cex, font = 3)
} else {
apply(Exons, 1, function(x) polygon(c(x[1], x[2], x[2], x[1]), c(-0.25, -0.25, -0.65, -0.65), col = "#000099"))
text(x = (max(start(gr), min(ES)) + min(end(gr), max(EE)))/2, y = -1, labels = genes$gene_name[g], cex = cex, font = 3)
}
}
}
}
plotRegion2 <- function (BSseq, region = NULL, extend = 0, main = "", addRegions = NULL, annoTrack = NULL, cex.anno = 1, geneTrack = NULL, cex.gene = 1.5,
col = NULL, lty = NULL, lwd = NULL, BSseqStat = NULL, stat = "tstat.corrected", stat.col = "black", stat.lwd = 1, stat.lty = 1,
stat.ylim = c(-8, 8), mainWithWidth = TRUE, regionCol = alpha("red", 0.1), addTicks = TRUE, addPoints = FALSE, pointsMinCov = 5,
highlightMain = FALSE) {
# Originally written by Kasper Daniel Hansen as part of the bsseq package
# Modified by Charles Mordaunt
# Plots smoothed methylation by sample and t-statistic, along with DMR and gene locations, for a single region
opar <- par(mar = c(0, 4.1, 0, 0), oma = c(2, 1, 2, 2), mfrow = c(1,1))
on.exit(par(opar))
if (is.null(BSseqStat) && !is.null(annoTrack) && !is.null(geneTrack)){layout(matrix(1:3, ncol = 1), heights = c(2, 0.5, 2))}
if (is.null(annoTrack) && !is.null(BSseqStat) && !is.null(geneTrack)){layout(matrix(1:3, ncol = 1), heights = c(2, 2, 2))}
if (is.null(geneTrack) && !is.null(BSseqStat) && !is.null(annoTrack)){layout(matrix(1:3, ncol = 1), heights = c(2, 2, 0.5))}
if (is.null(BSseqStat) && is.null(annoTrack) && !is.null(geneTrack)){layout(matrix(1:2, ncol = 1), heights = c(2, 2))}
if (is.null(BSseqStat) && is.null(geneTrack) && !is.null(annoTrack)){layout(matrix(1:2, ncol = 1), heights = c(2, 0.5))}
if (is.null(annoTrack) && is.null(geneTrack) && !is.null(BSseqStat)){layout(matrix(1:2, ncol = 1), heights = c(2, 2))}
if (is.null(annoTrack) && is.null(geneTrack) && is.null(BSseqStat)){layout(matrix(1:1, ncol = 1), heights = c(2))}
else {layout(matrix(1:4, ncol = 1), heights = c(2, 2, 0.5, 2))}
.plotSmoothData2(BSseq = BSseq, region = region, extend = extend, addRegions = addRegions, col = col, lty = lty, lwd = lwd, regionCol = regionCol,
addTicks = addTicks, addPoints = addPoints, pointsMinCov = pointsMinCov, highlightMain = highlightMain)
gr <- bsseq:::.bsGetGr(BSseq, region, extend)
if (!is.null(BSseqStat)) {
if (is(BSseqStat, "BSseqTstat")) {
stat.values <- as.array(getStats(BSseqStat)[, "tstat.corrected"])
stat.values <- as.array(stat.values)
stat.type <- "tstat"
}
if (is(BSseqStat, "BSseqStat")) {
stat.type <- getStats(BSseqStat, what = "stat.type")
if (stat.type == "tstat") {
stat.values <- getStats(BSseqStat, what = "stat")
stat.values <- as.array(stat.values)
}
if (stat.type == "fstat") {
stat.values <- sqrt(getStats(BSseqStat, what = "stat"))
stat.values <- as.array(stat.values)
}
}
plot(start(gr), 0.5, type = "n", xaxt = "n", yaxt = "n", ylim = stat.ylim, xlim = c(start(gr), end(gr)), xlab = "",
ylab = stat.type, cex.lab = 1.3)
axis(side = 2, at = c(-5, 0, 5), cex.axis = 1.2)
abline(h = 0, col = "grey60")
bsseq:::.bsPlotLines(start(BSseqStat), stat.values, lty = stat.lty, col = stat.col, lwd = stat.lwd, plotRange = c(start(gr), end(gr)))
bsseq:::.bsHighlightRegions(regions = addRegions, gr = gr, ylim = c(-5.75, 5.75), regionCol = regionCol, highlightMain = highlightMain)
}
if (!is.null(annoTrack)) plotAnnoTrack2(gr, annoTrack, cex.anno)
if (!is.null(geneTrack)) plotGeneTrack2(gr, geneTrack, cex.gene)
if (!is.null(main)) {
main <- bsseq:::.bsPlotTitle(gr = region, extend = extend, main = main, mainWithWidth = mainWithWidth)
mtext(side = 3, text = main, outer = TRUE, cex = 0.9, padj = 0)
}
return(invisible(NULL))
}
plotManyRegions2 <- function (BSseq, regions = NULL, extend = 0, main = "", addRegions = NULL, annoTrack = NULL, cex.anno = 1, geneTrack = NULL, cex.gene = 1.5,
col = NULL, lty = NULL, lwd = NULL, BSseqStat = NULL, stat = "tstat.corrected", stat.col = "black", stat.lwd = 1, stat.lty = 1,
stat.ylim = c(-8, 8), mainWithWidth = TRUE, regionCol = alpha("red", 0.1), addTicks = TRUE, addPoints = FALSE, pointsMinCov = 5,
highlightMain = FALSE, verbose = TRUE) {
# Originally written by Kasper Daniel Hansen as part of the bsseq package
# Modified by Charles Mordaunt
# Wrapper function for plotRegion2, which takes data.frame or GRanges object and plots every region.
if (!is.null(regions)) {
if (is(regions, "data.frame")) gr <- data.frame2GRanges(regions, keepColumns = FALSE)
else gr <- regions
if (!is(gr, "GRanges")) stop("'regions' needs to be either a 'data.frame' (with a single row) or a 'GRanges' (with a single element)")
} else gr <- granges(BSseq)
gr <- resize(gr, width = 2 * extend + width(gr), fix = "center")
BSseq <- subsetByOverlaps(BSseq, gr)
if (length(start(BSseq)) == 0) stop("No overlap between BSseq data and regions")
if (!is.null(main) && length(main) != length(gr)) main <- rep(main, length = length(gr))
for (ii in seq(along = gr)) {
if (verbose) cat(sprintf("[DMRfinder] plotting region %d (out of %d)\n", ii, nrow(regions)))
plotRegion2(BSseq = BSseq, region = regions[ii, ], extend = extend, col = col, lty = lty, lwd = lwd, main = main[ii],
BSseqStat = BSseqStat, stat = stat, stat.col = stat.col, stat.lwd = stat.lwd, stat.lty = stat.lty, stat.ylim = stat.ylim,
addRegions = addRegions, regionCol = regionCol, mainWithWidth = mainWithWidth, annoTrack = annoTrack,
cex.anno = cex.anno, geneTrack = geneTrack, cex.gene = cex.gene, addTicks = addTicks, addPoints = addPoints,
pointsMinCov = pointsMinCov, highlightMain = highlightMain)
}
}
.plotSmoothData2 <- function (BSseq, region, extend, addRegions, col, lty, lwd, regionCol, addTicks, addPoints, pointsMinCov, highlightMain) {
# Originally written by Kasper Daniel Hansen as part of the bsseq package
# Modified by Charles Mordaunt
# Plots smoothed methylation data for plotRegion2
gr <- bsseq:::.bsGetGr(BSseq, region, extend)
BSseq <- subsetByOverlaps(BSseq, gr)
sampleNames <- sampleNames(BSseq)
names(sampleNames) <- sampleNames
positions <- start(BSseq)
smoothPs <- getMeth(BSseq, type = "smooth")
rawPs <- getMeth(BSseq, type = "raw")
coverage <- getCoverage(BSseq)
if (addPoints) {
rawPs <- as.array(rawPs)
coverage <- as.array(coverage)
}
smoothPs <- as.array(smoothPs)
ymin <- if(floor(min(smoothPs)*10)/10 < 0){0} else {floor(min(smoothPs)*10)/10}
ymax <- if(ceiling(max(smoothPs)*10)/10 > 1){1} else {ceiling(max(smoothPs)*10)/10}
ymid <- round(mean(c(ymin, ymax)), 2)
colEtc <- bsseq:::.bsGetCol(object = BSseq, col = col, lty = lty, lwd = lwd)
plot(positions[1], 0.5, type = "n", xaxt = "n", yaxt = "n", ylim = c(ymin-(ymax-ymin)*0.1, ymax+(ymax-ymin)*0.05), xlim = c(start(gr), end(gr)),
xlab = "", ylab = "Methylation", cex.lab = 1.3)
axis(side = 2, at = c(ymin, ymid, ymax), cex.axis = 1.2, labels = c(ymin*100, ymid*100, ymax*100))
if (addTicks) rug(positions, ticksize = 0.08)
bsseq:::.bsHighlightRegions(regions = addRegions, gr = gr, ylim = c(ymin, ymax), regionCol = regionCol, highlightMain = highlightMain)
if (addPoints) {
sapply(1:ncol(BSseq), function(sampIdx) {
abline(v = positions[rawPs[, sampIdx] > 0.1], col = "grey80", lty = 1)
})
}
sapply(1:ncol(BSseq), function(sampIdx) {
bsseq:::.bsPlotLines(positions, smoothPs[, sampIdx], col = alpha(colEtc$col[sampIdx], 0.7), lty = colEtc$lty[sampIdx],
lwd = colEtc$lwd[sampIdx], plotRange = c(start(gr), end(gr)))
})
if (addPoints) {
sapply(1:ncol(BSseq), function(sampIdx) {
bsseq:::.bsPlotPoints(positions, rawPs[, sampIdx], coverage[, sampIdx], col = colEtc$col[sampIdx], pointsMinCov = pointsMinCov)
})
}
}
plotAnnoTrack2 <- function (gr, annoTrack, cex) {
# Originally written by Kasper Daniel Hansen as part of the bsseq package
# Modified by Charles Mordaunt
# Takes GRanges object of genomic annotations and plots it as part of plotRegion2
if (!all(sapply(annoTrack, function(xx) is(xx, "GRanges")))) stop("all elements in 'annoTrack' needs to be 'GRanges'")
plot(start(gr), 1, type = "n", xaxt = "n", yaxt = "n", bty = "n", ylim = c(0.5, length(annoTrack) + 0.5), xlim = c(start(gr), end(gr)),
xlab = "", ylab = "")
lapply(seq(along = annoTrack), function(ii) {
jj <- length(annoTrack) + 1 - ii
ir <- subsetByOverlaps(annoTrack[[ii]], gr)
if (length(ir) > 0) rect(start(ir) - 0.5, jj - 0.3, end(ir), jj + 0.3, col = "#006600", lwd = 0.8)
mtext(names(annoTrack)[ii], side = 2, at = jj, las = 1, line = 1, cex = cex, adj = 0.6)
})
}
bed_to_granges <- function(file){
# Written by Dave Tang
# Downloaded from https://github.com/davetang/bedr/blob/master/R/bed_to_granges.R
# Converts bed file to GRanges object for plotAnnoTrack2
df <- read.table(file, header=F, stringsAsFactors=F)
if(length(df) > 6) df <- df[,-c(7:length(df))]
if(length(df)<3) stop("File has less than 3 columns")
header <- c('chr','start','end','id','score','strand')
names(df) <- header[1:length(names(df))]
if('strand' %in% colnames(df)) df$strand <- gsub(pattern="[^+-]+", replacement = '*', x = df$strand)
if(length(df)==3) gr <- with(df, GRanges(chr, IRanges(start, end)))
else if (length(df)==4) gr <- with(df, GRanges(chr, IRanges(start, end), id=id))
else if (length(df)==5) gr <- with(df, GRanges(chr, IRanges(start, end), id=id, score=score))
else if (length(df)==6) gr <- with(df, GRanges(chr, IRanges(start, end), id=id, score=score, strand=strand))
return(gr)
}
packageLoad <- function(packages, lib = "/share/lasallelab/programs/DMRfinder/R_3.5"){
# Originally written by Ben Laufer as part of the DMRichR package
# Modified by Charles Mordaunt
# Installs and loads desired packages
CRAN <- c("BiocManager", "remotes", "magrittr")
new.CRAN.packages <- CRAN[!(CRAN %in% installed.packages(lib = lib)[,"Package"])]
if(length(new.CRAN.packages) > 0){install.packages(new.CRAN.packages, repos ="https://cloud.r-project.org", quiet = TRUE, lib = lib)}
stopifnot(suppressMessages(sapply(CRAN, require, character.only = TRUE)))
new.packages <- packages[!(packages %in% installed.packages()[,"Package"])]
if(length(new.packages)>0){BiocManager::install(new.packages, ask = FALSE, quiet = TRUE, lib = lib)}
stopifnot(suppressMessages(sapply(packages, require, character.only = TRUE)))
suppressWarnings(BiocManager::valid(fix = TRUE, update = TRUE, ask = FALSE))
}
#################################################
# Global Variables
#################################################
# Make sure optparse is installed
packageLib <- "/share/lasallelab/programs/DMRfinder/R_3.5"
.libPaths(packageLib)
if(!"optparse" %in% installed.packages(lib = packageLib)){install.packages("optparse", lib = packageLib)}
# Get arguments from bash script
cat("[DMRfinder] Getting arguments from bash script\n\n")
option_list <- list(
# Required arguments
optparse::make_option(opt_str = c("-n", "--chrNum"), type = "integer", default = NULL, help = "chromosome number"),
optparse::make_option(opt_str = c("-d", "--setwd"), type = "character", default = NULL, help = "working directory"),
optparse::make_option(opt_str = c("-c", "--numCtrl"), type = "integer", default = NULL, help = "number of control samples"),
optparse::make_option(opt_str = c("-e", "--numExp"), type = "integer", default = NULL, help = "number of experimental samples"),
optparse::make_option(opt_str = c("-a", "--genome"), type = "character", default = NULL, help = "genome assembly (hg38, hg19, mm10, rn6, rheMac8)"),
optparse::make_option(opt_str = c("-o", "--outprefix"), type = "character", default = NULL, help = "title used in output files"),
# Optional arguments
optparse::make_option(opt_str = c("--pctMinCtrl"), type = "double", default = 0.9, help = "minimum percent of control samples with 1 read at CpG [default = 0.9]"),
optparse::make_option(opt_str = c("--pctMinExp"), type = "double", default = 0.9, help = "minimum percent of experimental samples with 1 read at CpG [default = 0.9]"),
optparse::make_option(opt_str = c("--mc.cores"), type = "integer", default = 1, help = "cores to use, same as SBATCH -n [default = 1]"),
optparse::make_option(opt_str = c("--estimate.var"), type = "character", default = "same", help = "method to estimate variance for t-test (same, paired, group2) [default = same]"),
optparse::make_option(opt_str = c("--meanDiff_cutoff"), type = "double", default = 0.05, help = "minimum difference between group means for DMRs [default = 0.05]"),
optparse::make_option(opt_str = c("--maxGap"), type = "integer", default = 300, help = "maximum distance between all consecutive CpGs in a DMR [default = 300]"),
optparse::make_option(opt_str = c("--invdensity_cutoff"), type = "integer", default = 300, help = "maximum average distance between consecutive CpGs in a DMR [default = 300]"),
optparse::make_option(opt_str = c("--nperm"), type = "integer", default = 1000, help = "number of permutations to perform for FWER estimation [default = 1000]"),
# Output arguments
optparse::make_option(opt_str = c("--silver_bed"), type = "logical", default = TRUE, help = "Output bed file of locations for silver DMRs [default = TRUE]"),
optparse::make_option(opt_str = c("--silver_info"), type = "logical", default = TRUE, help = "Output txt file of info for silver DMRs [default = TRUE]"),
optparse::make_option(opt_str = c("--gold_plots"), type = "logical", default = TRUE, help = "Output pdf file of plots for gold DMRs [default = TRUE]"),
optparse::make_option(opt_str = c("--background"), type = "logical", default = TRUE, help = "Output bed file of background DMRs [default = TRUE]"),
optparse::make_option(opt_str = c("--gold_bed"), type = "logical", default = FALSE, help = "Output bed file of locations for gold DMRs [default = FALSE]"),
optparse::make_option(opt_str = c("--silver_plots"), type = "logical", default = FALSE, help = "Output pdf file of plots for silver DMRs [default = FALSE]"),
optparse::make_option(opt_str = c("--meth"), type = "logical", default = FALSE, help = "Output table of smoothed methylation for each sample at each silver DMR [default = FALSE]"),
optparse::make_option(opt_str = c("--cov"), type = "logical", default = FALSE, help = "Output table of total coverage for each sample at each DMR [default = FALSE]"),
optparse::make_option(opt_str = c("--background_cov"), type = "logical", default = FALSE, help = "Output table of total coverage for each sample at each background DMR [default = FALSE]"),
optparse::make_option(opt_str = c("--CpGs"), type = "logical", default = FALSE, help = "Output bed file of tested CpGs [default = FALSE]")
)
opt_obj <- optparse::OptionParser(option_list = option_list, epilogue = "\nAdd DSS_file prefixes after all other arguments, with all control samples first (DSS_files/CTRL01_)\n",
add_help_option = TRUE, usage = "usage: %prog [arguments]")
opt <- optparse::parse_args(object = opt_obj, positional_arguments = c(0, Inf), print_help_and_exit = FALSE)
# Test for required arguments
if(opt$options$help){print_help_compact(opt_obj); stop("", call.=FALSE)}
if(is.null(opt$options$chrNum)){print_help_compact(opt_obj); stop("chrNum must be supplied\n\n", call.=FALSE)}
if(is.null(opt$options$setwd)){print_help_compact(opt_obj); stop("setwd must be supplied\n\n", call.=FALSE)}
if(is.null(opt$options$numCtrl)){print_help_compact(opt_obj); stop("numCtrl must be supplied\n\n", call.=FALSE)}
if(is.null(opt$options$numExp)){print_help_compact(opt_obj); stop("numExp must be supplied\n\n", call.=FALSE)}
if(is.null(opt$options$genome)){print_help_compact(opt_obj); stop("genome must be supplied\n\n", call.=FALSE)}
if(is.null(opt$options$outprefix)){print_help_compact(opt_obj); stop("outprefix must be supplied\n\n", call.=FALSE)}
if(length(opt$args) < 4){print_help_compact(opt_obj); stop("At least 4 DSS files must be supplied\n\n", call.=FALSE)}
cat("\n", str(opt))
# Assign arguments to global variables
chrNum <- as.numeric(opt$options$chrNum)
setwd(as.character(opt$options$setwd))
numCtrl <- as.numeric(opt$options$numCtrl)
numExp <- as.numeric(opt$options$numExp)
genome <- as.character(opt$options$genome)
outprefix <- as.character(opt$options$outprefix)
numMinCtrl <- ceiling(as.numeric(opt$options$pctMinCtrl)*numCtrl)
numMinExp <- ceiling(as.numeric(opt$options$pctMinExp)*numExp)
mc.cores <- as.numeric(opt$options$mc.cores)
estimate.var <- as.character(opt$options$estimate.var)
meanDiff_cutoff <- as.numeric(opt$options$meanDiff_cutoff)
maxGap <- as.numeric(opt$options$maxGap)
invdensity_cutoff <- as.numeric(opt$options$invdensity_cutoff)
nperm <- as.numeric(opt$options$nperm)
gold_bed <- as.logical(opt$options$gold_bed)
silver_bed <- as.logical(opt$options$silver_bed)
silver_info <- as.logical(opt$options$silver_info)
gold_plots <- as.logical(opt$options$gold_plots)
silver_plots <- as.logical(opt$options$silver_plots)
background <- as.logical(opt$options$background)
meth <- as.logical(opt$options$meth)
cov <- as.logical(opt$options$cov)
background_cov <- as.logical(opt$options$background_cov)
CpGs <- as.logical(opt$options$CpGs)
DSSprefix <- opt$args
colorCtrl <- as.character("#3366CC")
colorExp <- as.character("#FF3366")
################################################
# Packages
################################################
cat("[DMRfinder] Loading packages\n")
packageLoad(packages = c("BiocGenerics", "Biobase", "S4Vectors", "matrixStats", "DelayedArray", "bsseq", "DSS", "permute",
"GenomicRanges", "scales"), lib = packageLib)
#################################################
# DMRfinder Pipeline Setup
#################################################
#Set up group variables
CTRLgroup <- paste("C",1:numCtrl,sep="")
EXPgroup <- paste("E",1:numExp,sep="")
groups <- c(EXPgroup, CTRLgroup)
# Create Combination Matrices
# Combinations are created differently based on number possible
# If < nperm possible (usually 1000), all combinations are created
# If > nperm, but < 1e8, nperm possibilities are sampled from all combinations
# If > 1e8, nperm permutations are performed (identical combinations are possible, but unlikely)
cat("\n[DMRfinder] Creating combination matrices\n")
set.seed(1)
if(choose(numCtrl+numExp, numExp) < 1e8){
idxMatrix <- NULL
temp <- combn(groups, length(EXPgroup), FUN = NULL, simplify = TRUE)
temp <- temp[,2:length(temp[1,])]
if(numCtrl == numExp) temp <- temp[,1:length(temp[1,])-1] # Remove inverse of reference combination
if(choose(numCtrl+numExp, numExp) > nperm) {
sample <- sample(x = 1:length(temp[1,]), size = nperm, replace = FALSE)
temp <- temp[,sample]
rm(sample)
}
for(i in 1:length(temp[1,])){
t <- c(temp[,i],setdiff(groups,temp[,i]))
idxMatrix <- rbind(idxMatrix,t)
}
idxMatrix1 <- rbind(EXPgroup, idxMatrix[,1:numExp])
idxMatrix2 <- rbind(CTRLgroup, idxMatrix[,(numExp+1):(numExp+numCtrl)])
rm(idxMatrix, temp, i, t)
} else {
idxMatrix <- permuteAll(nperm = nperm, design = numCtrl+numExp)
idxMatrixsub <- subsetByMatrix(c(CTRLgroup, EXPgroup), idxMatrix)
idxMatrix1 <- rbind(EXPgroup, idxMatrixsub[,1:numExp])
idxMatrix2 <- rbind(CTRLgroup, idxMatrixsub[,(numExp+1):(numExp+numCtrl)])
rm(idxMatrix,idxMatrixsub)
}
# Get gene and CpG island bed file names
cat("\n[DMRfinder] Loading genes and CpG islands\n")
if(genome == "hg38"){
CGI_bedfile <- "/share/lasallelab/genomes/hg38/GTF/hg38_genome_CGI.bed"
Genes_bedfile <- "/share/lasallelab/genomes/hg38/GTF/hg38_RefSeq_Genes.bed"
} else if(genome == "hg19"){
CGI_bedfile <- "/share/lasallelab/genomes/hg19/GTF/hg19_genome_CGI.bed"
Genes_bedfile <- "/share/lasallelab/genomes/hg19/GTF/hg19_RefSeq_Genes.bed"
} else if(genome == "mm10"){
CGI_bedfile <- "/share/lasallelab/genomes/mm10/GTF/mm10_genome_CGI.bed"
Genes_bedfile <- "/share/lasallelab/genomes/mm10/GTF/mm10_RefSeq_Genes.bed"
} else if(genome == "rn6"){
CGI_bedfile <- "/share/lasallelab/genomes/rn6/GTF/rn6_genome_CGI.bed"
Genes_bedfile <- "/share/lasallelab/genomes/rn6/GTF/rn6_RefSeq_Genes.bed"
} else if(genome == "rheMac8"){
CGI_bedfile <- "/share/lasallelab/genomes/rheMac8/GTF/rheMac8_genome_CGI.bed"
Genes_bedfile <- "/share/lasallelab/genomes/rheMac8/GTF/rheMac8_RefSeq_Genes.bed"
} else{cat(paste("Warning! Gene locations unknown because genome is defined as ",genome,"\n"))}
# Load genes bed file
genome_genes <- read.delim(Genes_bedfile, header=FALSE)
colnames(genome_genes) <- c("chr", "start", "end", "gene_name", "space", "strand")
genome_genes$strand <- as.character(genome_genes$strand)
genome_genes$gene_name <- as.character(genome_genes$gene_name)
# Load CpG islands bed file
genome_CpG_islands <- bed_to_granges(CGI_bedfile)
genome_list <- list(genome_CpG_islands)
names(genome_list) <- c("CGI")
# Load chromosome data
if(genome == "hg38" | genome == "hg19"){chroms = paste("chr",1:22,sep=""); chroms = c(chroms,"chrX","chrY", "chrM")
}else if(genome == "mm10"){chroms = paste("chr",1:19,sep="");chroms = c(chroms,"chrX","chrY", "chrM")
}else if(genome == "rn6"){chroms = paste("chr",1:20,sep="");chroms = c(chroms,"chrX","chrY", "chrM")
}else if(genome == "rheMac8"){chroms = paste("chr",1:20,sep="");chroms = c(chroms,"chrX","chrY", "chrM")
}else{cat(paste("Warning! Chromosome names unknown because genome is defined as ",genome,"\n"))}
#################################################
# Main DMRfinder Pipeline
#################################################
# Load chromosome DSS files
chrom = chroms[chrNum]
cat("\n[DMRfinder] Loading", chrom, "DSS files\n")
DSSlist = list(read.table(paste(DSSprefix[1],chrom,".DSS.txt",sep=""), header=TRUE))
for(i in 2:length(DSSprefix)) DSSlist = c(DSSlist,list(read.table(paste(DSSprefix[i],chrom,".DSS.txt",sep=""), header=TRUE)))
# Make BSobject and smooth
cat("\n[DMRfinder] Making BSobject and smoothing\n")
BSobj <- makeBSseqData(DSSlist,c(CTRLgroup,EXPgroup))
rm(DSSlist)
BSobj_smoothed <- BSmooth(BSseq = BSobj, ns = 70, h = 1000, maxGap = 10^8, keep.se = FALSE,
BPPARAM = MulticoreParam(workers = mc.cores, progressbar = TRUE), verbose = TRUE)
cat("[DMRfinder] Completed smoothing\n")
# Add group assignments and color to smoothed BSobject
pData <- pData(BSobj_smoothed)
pData$type <- as.character(c(rep(c("Ctrl"), numCtrl), rep(c("Exp") ,numExp)))
pData$col <- c(rep(c(colorCtrl), numCtrl), rep(c(colorExp), numExp))
pData(BSobj_smoothed) <- pData
# Subset BSobject by coverage
cat("\n[DMRfinder] Subsetting BSobject by coverage\n")
BSobj_cov <- getCoverage(BSobj_smoothed)
keep_loci <- which(rowSums2(BSobj_cov[, BSobj_smoothed$type == "Ctrl"] >= 1) >= numMinCtrl & rowSums2(BSobj_cov[, BSobj_smoothed$type == "Exp"] >= 1) >= numMinExp)
BSobj_keep <- BSobj_smoothed[keep_loci,]
# Perform t-tests
cat("\n[DMRfinder] Performing t-tests by CpG\n")
BSobj_tstat <- BSmooth.tstat(BSobj_keep, group1 = EXPgroup, group2 = CTRLgroup, estimate.var = estimate.var, local.correct = TRUE, qSd = 0.75, k = 101,
maxGap = 10^8, mc.cores = mc.cores, verbose = FALSE)
# Output tested CpGs in bed file
if(CpGs){
CpG_keep <- data.frame(chr = rep(as.character(BSobj_keep@rowRanges@seqnames@values), BSobj_keep@rowRanges@seqnames@lengths),
start = as.numeric(BSobj_keep@rowRanges@ranges@start),
end = as.numeric(BSobj_keep@rowRanges@ranges@start)+1)
cat("\n[DMRfinder] Printing locations for", length(CpG_keep[,1]), "tested CpGs\n")
write.table(CpG_keep, paste(outprefix, chrom, "CpGs.bed", sep="_"), sep ="\t", quote = FALSE, row.names = FALSE, col.names = FALSE)
}
# Find DMRs
cat("\n[DMRfinder] Identifying DMRs\n")
cutoff <- qt(1-0.05/2, numCtrl+numExp-2)
all_DMRs <- dmrFinder(BSobj_tstat, cutoff = c(-cutoff, cutoff), maxGap = maxGap, verbose = FALSE)
if(length(all_DMRs[,1]) > 0){
all_DMRs$end <- all_DMRs$end + 1 #Add one base to end to include last CpG
silver_DMRs <- subset(all_DMRs, n >=3 & abs(meanDiff) > meanDiff_cutoff & invdensity <= invdensity_cutoff)
cat("\n[DMRfinder] Found", length(silver_DMRs[,1]), "silver DMRs\n")
# Do permutation testing to estimate FWER
if(nperm > 0){
if(length(silver_DMRs[,1]) > 0){
cat("\n[DMRfinder] Performing permutation testing to estimate FWER\n")
null_DMRs <- getNullDistribution_BSmooth.tstat(BSobj_keep, idxMatrix1, idxMatrix2, cutoff = c(-cutoff, cutoff),
mc.cores = mc.cores, maxGap = maxGap, estimate.var = estimate.var, local.correct = TRUE)
null_silver_DMRs <- lapply(null_DMRs, subsetDmrs, meanDiff = meanDiff_cutoff, invdensity = invdensity_cutoff)
silver_DMRs$FWER <- getFWER(null_silver_DMRs)
if(max(silver_DMRs$FWER) == 0){
silver_DMRs$Rel_FWER <- rep(0, length(silver_DMRs[,1]))
} else {
silver_DMRs$Rel_FWER <- silver_DMRs$FWER / max(silver_DMRs$FWER)
}
gold_DMRs <- subset(silver_DMRs, Rel_FWER < 0.05)
if(length(gold_DMRs[,1]) > 0){
cat("\n[DMRfinder] Found", length(gold_DMRs[,1]), "gold DMR(s)!\n")
if(gold_bed){
cat("\n[DMRfinder] Printing gold DMR locations\n")
write.dmrs_bed(gold_DMRs, paste(outprefix, chrom, "gold_DMRs.bed", sep = "_"), paste(outprefix, chrom, "gold_DMRs", sep = "_"), genome)
}
if(gold_plots){
cat("\n[DMRfinder] Printing gold DMR plots\n")
dmrfilename = paste(outprefix, chrom,"gold_DMR_plots.pdf",sep="_")
pdf(file = dmrfilename, width = 6.7, height = 3.25)
plotManyRegions2(BSseq = BSobj_smoothed, regions = gold_DMRs, extend = 5000, addRegions = silver_DMRs,
lwd = rep(1.1, numCtrl+numExp), verbose = FALSE, BSseqStat = BSobj_tstat, stat.lwd = 1.3,
stat.ylim = c(-6,6), geneTrack = genome_genes, cex.gene = 1.1, annoTrack = genome_list, cex.anno = 0.8)
dev.off()
}
} else{cat("\n[DMRfinder] Warning, no gold DMRs found in", chrom ,"\n")}
}else{cat("\n[DMRfinder] Warning, no silver DMRs found in", chrom ,"\n")}
}
# Print output files for silver DMRs
if(length(silver_DMRs[,1]) > 0){
if(silver_bed){
cat("\n[DMRfinder] Printing silver DMR locations\n")
write.dmrs_bed(silver_DMRs, paste(outprefix, chrom, "silver_DMRs.bed", sep = "_"), paste(outprefix, chrom, "silver_DMRs", sep="_"), genome)
}
if(silver_plots){
cat("\n[DMRfinder] Printing silver DMR plots\n")
dmrfilename = paste(outprefix, chrom, "silver_DMR_plots.pdf", sep = "_")
pdf(file = dmrfilename, width = 6.7, height = 3.25) #Opens file for figures
plotManyRegions2(BSseq = BSobj_smoothed, regions = silver_DMRs, extend = 5000, addRegions = silver_DMRs,
lwd = rep(1.1, numCtrl+numExp), verbose = FALSE, BSseqStat = BSobj_tstat, stat.lwd = 1.3,
stat.ylim = c(-6,6), geneTrack = genome_genes, cex.gene = 1.1, annoTrack = genome_list, cex.anno = 0.8)
dev.off()
}
if(silver_info){
cat("\n[DMRfinder] Printing silver DMR info\n")
silver_DMR_info <- silver_DMRs[,c("chr", "start", "end", "n", "width", "invdensity", "areaStat", "maxStat", "tstat.sd",
"group2.mean", "group1.mean", "meanDiff", "direction", "FWER", "Rel_FWER")]
colnames(silver_DMR_info) <- c("chr", "start", "end", "CpGs", "width", "invdensity", "areaStat", "maxStat", "tstat_sd",
"Ctrl_mean", "Exp_mean", "meanDiff", "direction", "FWER", "Rel_FWER")
write.table(silver_DMR_info, paste(outprefix, chrom, "silver_DMR_info.txt", sep = "_"), sep = "\t",
quote = FALSE, row.names = FALSE)
}
}
# Output smoothed methylation in each DMR for each sample
if(length(silver_DMRs[,1]) > 0){
if(meth){
cat("\n[DMRfinder] Printing silver DMR smoothed methylation\n")
DMR_meth <- data.frame(getMeth(BSseq = BSobj_keep, regions = silver_DMRs, type = "smooth", what = "perRegion"))
DMR_meth <- round(DMR_meth, 4)
sample_names <- gsub(".*/", "", DSSprefix)
sample_names <- gsub("_", "", sample_names)
colnames(DMR_meth) <- sample_names
DMR_meth <- cbind(silver_DMRs[,c("chr", "start", "end")], DMR_meth)
write.table(DMR_meth, paste(outprefix, chrom,"silver_DMR_methylation.txt", sep="_"), sep ="\t", quote = FALSE, row.names = FALSE, col.names = TRUE)
}
# Output coverage in each DMR for each sample
if(cov){
cat("\n[DMRfinder] Printing silver DMR coverage\n")
DMR_cov <- data.frame(getCoverage(BSseq = BSobj_keep, regions = silver_DMRs, type = "Cov", what = "perRegionTotal"))
sample_names <- gsub(".*/", "", DSSprefix)
sample_names <- gsub("_", "", sample_names)
colnames(DMR_cov) <- sample_names
DMR_cov <- cbind(silver_DMRs[,c("chr", "start", "end")], DMR_cov)
write.table(DMR_cov, paste(outprefix, chrom, "silver_DMR_coverage.txt", sep = "_"), sep = "\t", quote = FALSE, row.names = FALSE, col.names = TRUE)
}
}
}else{cat("Warning, no DMRs found in ", chrom ,"\n")}
# Make Background DMR bed file
if(background){
cat("\n[DMRfinder] Identifying background DMRs\n")
all_background_DMRs <- dmrFinder(BSobj_tstat, cutoff = c(-0, 0), maxGap = maxGap, verbose = FALSE)
if(length(all_background_DMRs[,1]) > 0){
all_background_DMRs$end <- all_background_DMRs$end + 1 #Add one base to end to include last CpG
silver_background_DMRs <- subset(all_background_DMRs, n >=3 & invdensity <= invdensity_cutoff)
cat("\n[DMRfinder] Found", length(silver_background_DMRs[,1]), "background DMRs\n")
}else cat("Warning, no background DMRs found in ", chrom ,"\n")
if(length(silver_background_DMRs[,1]) > 0){
cat("\n[DMRfinder] Printing background DMR locations\n")
headerline <- paste("track name=", paste(outprefix, chrom, "background_DMRs",sep = "_")," description=", paste(outprefix, chrom, "background_DMRs", sep = "_"),
" useScore=0 itemRgb=Off genome=", genome, sep = "")
write(headerline, paste(outprefix, chrom, "background_DMRs.bed", sep = "_"))
write.table(silver_background_DMRs[,c("chr", "start", "end")], paste(outprefix, chrom, "background_DMRs.bed", sep = "_"), append = TRUE, quote = FALSE, sep = "\t",
row.names = FALSE, col.names = FALSE)
if(background_cov){
cat("\n[DMRfinder] Printing background DMR coverage\n")
back_cov <- data.frame(getCoverage(BSseq = BSobj_keep, regions = silver_background_DMRs, type = "Cov", what = "perRegionTotal"))
sample_names <- gsub(".*/", "", DSSprefix)
sample_names <- gsub("_", "", sample_names)
if(length(silver_background_DMRs[,1]) == 1){
back_cov <- t(as.matrix(back_cov))
back_cov <- cbind(silver_background_DMRs[,c("chr", "start", "end")], back_cov)
colnames(back_cov)[4:length(back_cov[1,])] <- sample_names
write.table(back_cov, paste(outprefix, chrom, "background_DMR_coverage.txt", sep = "_"), sep = "\t", quote = FALSE, row.names = FALSE, col.names = TRUE)
} else {
colnames(back_cov) <- sample_names
back_cov <- cbind(silver_background_DMRs[,c("chr", "start", "end")], back_cov)
write.table(back_cov, paste(outprefix, chrom, "background_DMR_coverage.txt", sep = "_"), sep = "\t", quote = FALSE, row.names = FALSE, col.names = TRUE)
}
}
}else cat("Warning, no silver background DMRs found in ", chrom ,"\n")
}
# Cleanup memory
rm(list=ls())
cat("\n[DMRfinder] Finished!\n\n")