forked from cyclops-community/ctf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgebraic_multigrid.cxx
575 lines (504 loc) · 16.2 KB
/
algebraic_multigrid.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/** \addtogroup examples
* @{
* \defgroup algebraic_multigrid algebraic_multigrid
* @{
* \brief Benchmark for smoothed algebraic multgrid
*/
#include <ctf.hpp>
using namespace CTF;
//#define ERR_REPORT
typedef float REAL;
void smooth_jacobi(Matrix<REAL> & A, Vector<REAL> & x, Vector <REAL> & b, int nsm){
Timer jacobi("jacobi");
Timer jacobi_spmv("jacobi_spmv");
jacobi.start();
Vector<REAL> d(x.len, *x.wrld);
d["i"] = A["ii"];
Transform<REAL>([](REAL & d){ d= fabs(d) > 0.0 ? 1./d : 0.0; })(d["i"]);
Matrix<REAL> R(A);
R["ii"] = 0.0;
Vector<REAL> x1(x.len, *x.wrld);
/*
int64_t N = A.nrow;
Vector<REAL> Red(N, *A.wrld);
Vector<REAL> Blk(N, *A.wrld);
int64_t Np = N / A.wrld->np;
int64_t sNp = Np * A.wrld->rank;
if (A.wrld->rank < N % A.wrld->np) Np++;
sNp += std::min(A.wrld->rank,(int)( N % A.wrld->np));
int64_t * inds_R = (int64_t*)malloc(sizeof(int64_t)*Np);
REAL * vals_R = (REAL*)malloc(sizeof(REAL)*Np);
int64_t * inds_B = (int64_t*)malloc(sizeof(int64_t)*Np);
REAL * vals_B = (REAL*)malloc(sizeof(REAL)*Np);
int nR = 0;
int nB = 0;
int64_t n=1;
while (n*n*n < N) n++;
assert(n*n*n==N);
for (int64_t i=0; i<Np; i++){
bool p = 1;
if (((i+sNp)/(n*n)) % 2 == 1) p = !p;
if ((((i+sNp)/n)%n) % 2 == 1) p = !p;
if (((i+sNp)%n) % 2 == 1) p = !p;
if (p){
inds_B[nB] = i+sNp;
vals_B[nB] = 1.;
nB++;
} else {
inds_R[nR] = i+sNp;
vals_R[nR] = 1.;
nR++;
}
}
Red.write(nR, inds_R, vals_R);
Blk.write(nB, inds_B, vals_B);*/
double omega = .333;
//20 iterations of Jacobi, should probably be a parameter or some convergence check instead
for (int i=0; i<nsm; i++){
/* jacobi_spmv.start();
x1["i"] = -omega*A["ij"]*x["j"];
jacobi_spmv.stop();
x1["i"] *= d["i"];
x1["i"] += x["i"];
x1["i"] += omega*d["i"]*b["i"];
x["i"] *= Red["i"];
x["i"] += Blk["i"]*x1["i"];
jacobi_spmv.start();
x1["i"] = -omega*A["ij"]*x["j"];
jacobi_spmv.stop();
x1["i"] *= d["i"];
x1["i"] += x["i"];
x1["i"] += omega*d["i"]*b["i"];
x["i"] *= Blk["i"];
x["i"] += Red["i"]*x1["i"];*/
// x["i"] *= .333;
jacobi_spmv.start();
x1["i"] = -1.*R["ij"]*x["j"];
jacobi_spmv.stop();
x1["i"] += b["i"];
x1["i"] *= d["i"];
x["i"] *= (1.-omega);
x["i"] += omega*x1["i"];
//x["i"] = x1["i"];
#ifdef ERR_REPORT
Vector<REAL> r(b);
r["i"] -= A["ij"]*x["j"];
r.print();
REAL rnorm = r.norm2();
if (A.wrld->rank == 0) printf("r norm is %E\n",rnorm);
#endif
}
jacobi.stop();
}
void vcycle(Matrix<REAL> & A, Vector<REAL> & x, Vector<REAL> & b, Matrix<REAL> * P, Matrix<REAL> * PTAP, int64_t N, int nlevel, int * nsm){
//do smoothing using Jacobi
char tlvl_name[] = {'l','v','l',(char)('0'+nlevel),'\0'};
Timer tlvl(tlvl_name);
tlvl.start();
Vector<REAL> r(N,*A.wrld,"r");
#ifdef ERR_REPORT
r["i"] -= A["ij"]*x["j"];
r["i"] += b["i"];
REAL rnorm0 = r.norm2();
#endif
#ifdef ERR_REPORT
if (A.wrld->rank == 0) printf("At level %d residual norm was %1.2E initially\n",nlevel,rnorm0);
#endif
if (N==1){
x["i"] = Function<REAL>([](REAL a, REAL b){ return b/a; })(A["ij"],b["j"]);
} else {
smooth_jacobi(A,x,b,nsm[0]);
}
r["i"] = b["i"];
r["i"] -= A["ij"]*x["j"];
#ifdef ERR_REPORT
REAL rnorm = r.norm2();
#endif
if (nlevel == 0){
#ifdef ERR_REPORT
if (A.wrld->rank == 0) printf("At level %d (coarsest level), residual norm was %1.2E initially\n",nlevel,rnorm0);
if (A.wrld->rank == 0) printf("At level %d (coarsest level), residual norm was %1.2E after smooth\n",nlevel,rnorm);
#endif
return;
}
int64_t m = P[0].lens[1];
//smooth the restriction/interpolation operator P = (I-omega*diag(A)^{-1}*A)T
Timer rstr("restriction");
rstr.start();
//restrict residual vector
Vector<REAL> PTr(m, *x.wrld);
PTr["i"] += P[0]["ji"]*r["j"];
//coarses initial guess should be zeros
Vector<REAL> zx(m, *b.wrld);
rstr.stop();
tlvl.stop();
//recurse into coarser level
vcycle(PTAP[0], zx, PTr, P+1, PTAP+1, m, nlevel-1, nsm+1);
tlvl.start();
//interpolate solution to residual equation at coraser level back
x["i"] += P[0]["ij"]*zx["j"];
#ifdef ERR_REPORT
r["i"] = b["i"];
r["i"] -= A["ij"]*x["j"];
REAL rnorm2 = r.norm2();
#endif
//smooth new solution
smooth_jacobi(A,x,b,nsm[0]);
tlvl.stop();
#ifdef ERR_REPORT
r["i"] = b["i"];
r["i"] -= A["ij"]*x["j"];
REAL rnorm3 = r.norm2();
if (A.wrld->rank == 0) printf("At level %d, residual norm was %1.2E initially\n",nlevel,rnorm0);
if (x.wrld->rank == 0) printf("At level %d, n=%ld residual norm was %1.2E after initial smooth\n",nlevel,N,rnorm);
if (A.wrld->rank == 0) printf("At level %d, residual norm was %1.2E after coarse recursion\n",nlevel,rnorm2);
if (A.wrld->rank == 0) printf("At level %d, residual norm was %1.2E after final smooth\n",nlevel,rnorm3);
#endif
}
void setup(Matrix<REAL> & A, Matrix<REAL> * T, int N, int nlevel, Matrix<REAL> * P, Matrix<REAL> * PTAP){
if (nlevel == 0) return;
char slvl_name[] = {'s','l','v','l',(char)('0'+nlevel),'\0'};
Timer slvl(slvl_name);
slvl.start();
int64_t m = T[0].lens[1];
P[0] = Matrix<REAL>(N, m, SP, *T[0].wrld);
Matrix<REAL> D(N,N,SP,*A.wrld);
D["ii"] = A["ii"];
REAL omega=.333;
Transform<REAL>([=](REAL & d){ d= omega/d; })(D["ii"]);
Timer trip("triple_matrix_product_to_form_T");
trip.start();
Matrix<REAL> F(P[0]);
F["ik"] = A["ij"]*T[0]["jk"];
P[0]["ij"] = T[0]["ij"];
P[0]["ik"] -= D["il"]*F["lk"];
trip.stop();
int atr = 0;
if (A.is_sparse){
atr = atr | SP;
}
Matrix<REAL> AP(N, m, atr, *A.wrld);
PTAP[0] = Matrix<REAL>(m, m, atr, *A.wrld);
Timer trip2("triple_matrix_product_to_form_PTAP");
trip2.start();
//restrict A via triple matrix product, should probably be done outside v-cycle
AP["lj"] = A["lk"]*P[0]["kj"];
PTAP[0]["ij"] = P[0]["li"]*AP["lj"];
trip2.stop();
slvl.stop();
setup(PTAP[0], T+1, m, nlevel-1, P+1, PTAP+1);
}
/**
* \brief computes Multigrid for a 3D regular discretization
*/
int test_alg_multigrid(int64_t N,
int nlvl,
int * nsm,
Matrix<REAL> & A,
Vector<REAL> & b,
Vector<REAL> & x_init,
Matrix<REAL> * P,
Matrix<REAL> * PTAP){
Vector<REAL> x2(x_init);
Timer_epoch vc("vcycle");
vc.begin();
double st_time = MPI_Wtime();
vcycle(A, x_init, b, P, PTAP, N, nlvl, nsm);
double vtime = MPI_Wtime()-st_time;
vc.end();
smooth_jacobi(A,x2,b,2*nsm[0]);
Vector<REAL> r2(x2);
r2["i"] = b["i"];
r2["i"] -= A["ij"]*x2["j"];
REAL rnorm_alt = r2.norm2();
Vector<REAL> r(x_init);
r["i"] = b["i"];
r["i"] -= A["ij"]*x_init["j"];
REAL rnorm = r.norm2();
bool pass = rnorm < rnorm_alt;
if (A.wrld->rank == 0){
#ifndef TEST_SUITE
printf("Algebraic multigrid with n %ld nlvl %d took %lf seconds, fine-grid only err = %E, multigrid err = %E\n",N,nlvl,vtime,rnorm_alt,rnorm);
#endif
if (pass)
printf("{ algebraic multigrid method } passed \n");
else
printf("{ algebraic multigrid method } failed \n");
}
return pass;
}
void setup_unstructured(int64_t n,
int nlvl,
REAL sp_frac,
int ndiv,
int decay_exp,
Matrix<REAL> & A,
Matrix<REAL> *& P,
Matrix<REAL> *& PTAP,
World & dw){
int64_t n3 = n*n*n;
Timer tct("initialization");
tct.start();
A = Matrix<REAL>(n3, n3, SP, dw);
srand48(dw.rank*12);
A.fill_sp_random(0.0, 1.0, sp_frac);
A["ij"] += A["ji"];
REAL pn = sqrt((REAL)n);
A["ii"] += pn;
if (dw.rank == 0){
printf("Generated matrix with dimension %1.2E and %1.2E nonzeros\n", (REAL)n3, (REAL)A.nnz_tot);
fflush(stdout);
}
Matrix<std::pair<REAL, int64_t>> B(n3,n3,SP,dw,Set<std::pair<REAL, int64_t>>());
int64_t * inds;
REAL * vals;
std::pair<REAL,int64_t> * new_vals;
int64_t nvals;
A.get_local_data(&nvals, &inds, &vals, true);
new_vals = (std::pair<REAL,int64_t>*)malloc(sizeof(std::pair<REAL,int64_t>)*nvals);
for (int64_t i=0; i<nvals; i++){
new_vals[i] = std::pair<REAL,int64_t>(vals[i],abs((inds[i]%n3) - (inds[i]/n3)));
}
B.write(nvals,inds,new_vals);
delete [] vals;
free(new_vals);
free(inds);
Transform< std::pair<REAL,int64_t> >([=](std::pair<REAL,int64_t> & d){
int64_t x = d.second % n;
int64_t y = (d.second / n) % n;
int64_t z = d.second / n / n;
if (x+y+z > 0)
d.first = d.first/pow((REAL)(x+y+z),decay_exp/2.);
}
)(B["ij"]);
A["ij"] = Function< std::pair<REAL,int64_t>, REAL >([](std::pair<REAL,int64_t> p){ return p.first; })(B["ij"]);
Matrix<REAL> * T = new Matrix<REAL>[nlvl];
int64_t m=n3;
int tot_ndiv = ndiv*ndiv*ndiv;
for (int i=0; i<nlvl; i++){
int64_t m2 = m/tot_ndiv;
T[i] = Matrix<REAL>(m, m2, SP, dw);
int64_t mmy = m2/dw.np;
if (dw.rank < m2%dw.np) mmy++;
Pair<REAL> * pairs = (Pair<REAL>*)malloc(sizeof(Pair<REAL>)*mmy*tot_ndiv);
int64_t nel = 0;
for (int64_t j=dw.rank; j<m2; j+=dw.np){
for (int k=0; k<tot_ndiv; k++){
pairs[nel] = Pair<REAL>(j*m+j*tot_ndiv+k, 1.0);
nel++;
}
}
T[i].write(nel, pairs);
delete [] pairs;
m = m2;
}
tct.stop();
P = new Matrix<REAL>[nlvl];
PTAP = new Matrix<REAL>[nlvl];
Timer_epoch ve("setup");
ve.begin();
setup(A, T, n3, nlvl, P, PTAP);
ve.end();
}
void setup_3d_Poisson(int64_t n,
int nlvl,
int ndiv,
Matrix<REAL> & A,
Matrix<REAL> *& P,
Matrix<REAL> *& PTAP,
World & dw){
Timer tct("initialization");
tct.start();
int n3 =n*n*n;
A = Matrix<REAL>(n3, n3, SP, dw);
A["ii"] = 3.;
int64_t my_col = n3/dw.np;
int64_t my_col_st = dw.rank*my_col;
if (dw.rank < n%dw.np) my_col++;
my_col_st += std::min((int)dw.rank, n3%dw.np);
int64_t my_tot_nnz = my_col*3;
int64_t * inds = (int64_t*)malloc(sizeof(int64_t)*my_tot_nnz);
REAL * vals = (REAL*)malloc(sizeof(REAL)*my_tot_nnz);
int64_t act_tot_nnz = 0;
for (int64_t col=my_col_st; col<my_col_st+my_col; col++){
if ((col+1)%n != 0){
inds[act_tot_nnz] = col*n3 + col+1;
vals[act_tot_nnz] = -1.;
act_tot_nnz++;
}
if (col+n < n3 && (col/n+1)%n != 0){
inds[act_tot_nnz] = col*n3 + col+n;
vals[act_tot_nnz] = -1.;
act_tot_nnz++;
}
if (col+n*n < n3 && (col/(n*n)+1)%n != 0){
inds[act_tot_nnz] = col*n3 + col+n*n;
vals[act_tot_nnz] = -1.;
act_tot_nnz++;
}
}
A.write(act_tot_nnz, inds, vals);
free(inds);
free(vals);
A["ij"] += A["ji"];
if (dw.rank == 0){
printf("Generated matrix with dimension %1.2E and %1.2E nonzeros\n", (REAL)n3, (REAL)A.nnz_tot);
fflush(stdout);
}
Matrix<REAL> * T = new Matrix<REAL>[nlvl];
int64_t m=n3;
int64_t nn=n;
int tot_ndiv = ndiv*ndiv*ndiv;
for (int i=0; i<nlvl; i++){
int64_t m2 = m/tot_ndiv;
T[i] = Matrix<REAL>(m, m2, SP, dw);
int64_t mmy = m2/dw.np;
if (dw.rank < m2%dw.np) mmy++;
Pair<REAL> * pairs = (Pair<REAL>*)malloc(sizeof(Pair<REAL>)*mmy*tot_ndiv);
//Pair<REAL> * pairs = new Pair<REAL>[mmy*tot_ndiv];
int64_t nel = 0;
for (int64_t j=dw.rank; j<m2; j+=dw.np){
int64_t j1 = j/(nn*nn);
int64_t j2 = (j/nn)%nn;
int64_t j3 = j%nn;
for (int k1=0; k1<ndiv; k1++){
for (int k2=0; k2<ndiv; k2++){
for (int k3=0; k3<ndiv; k3++){
//printf("i=%d, m= %ld m2=%ld key = %ld\n",i,m,m2,j*m+(j1*ndiv+k1)*nn*nn+(j2*ndiv+k2)*nn+j3*ndiv+k3);
pairs[nel] = Pair<REAL>(j*m+(j1*ndiv+k1)*nn*nn+(j2*ndiv+k2)*nn+j3*ndiv+k3, 1.0/tot_ndiv);
nel++;
}
}
}
}
T[i].write(nel, pairs);
free(pairs);
m = m2;
nn = n/ndiv;
}
tct.stop();
P = new Matrix<REAL>[nlvl];
PTAP = new Matrix<REAL>[nlvl];
Timer_epoch ve("setup");
ve.begin();
setup(A, T, n3, nlvl, P, PTAP);
ve.end();
}
#ifndef TEST_SUITE
char* getCmdOption(char ** begin,
char ** end,
const std::string & option){
char ** itr = std::find(begin, end, option);
if (itr != end && ++itr != end){
return *itr;
}
return 0;
}
int main(int argc, char ** argv){
int rank, np, pass, nlvl, ndiv, decay_exp, nsmooth, poi;
int * nsm;
int64_t n;
REAL sp_frac;
int const in_num = argc;
char ** input_str = argv;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &np);
if (getCmdOption(input_str, input_str+in_num, "-n")){
n = atoi(getCmdOption(input_str, input_str+in_num, "-n"));
if (n < 0) n = 16;
} else n = 16;
if (getCmdOption(input_str, input_str+in_num, "-nlvl")){
nlvl = atoi(getCmdOption(input_str, input_str+in_num, "-nlvl"));
if (nlvl < 0) nlvl = 3;
} else nlvl = 3;
if (getCmdOption(input_str, input_str+in_num, "-ndiv")){
ndiv = atoi(getCmdOption(input_str, input_str+in_num, "-ndiv"));
if (ndiv < 0) ndiv = 2;
} else ndiv = 2;
if (getCmdOption(input_str, input_str+in_num, "-nsmooth")){
nsmooth = atoi(getCmdOption(input_str, input_str+in_num, "-nsmooth"));
if (nsmooth < 0) nsmooth = 3;
} else nsmooth = 3;
nsm = (int*)malloc(sizeof(int)*nlvl);
std::fill(nsm, nsm+nlvl, nsmooth);
char str[] = {'-','n','s','m','0','\0'};
for (int i=0; i<nlvl; i++){
str[4] = '0'+i;
if (getCmdOption(input_str, input_str+in_num, str)){
int insm = atoi(getCmdOption(input_str, input_str+in_num, str));
if (insm > 0) nsm[i] = insm;
}
}
if (getCmdOption(input_str, input_str+in_num, "-poi")){
poi = atoi(getCmdOption(input_str, input_str+in_num, "-poi"));
if (poi < 0) poi = 0;
} else poi = 1;
if (getCmdOption(input_str, input_str+in_num, "-decay_exp")){
decay_exp = atoi(getCmdOption(input_str, input_str+in_num, "-decay_exp"));
if (decay_exp < 0) decay_exp = 3;
} else decay_exp = 3;
if (getCmdOption(input_str, input_str+in_num, "-sp_frac")){
sp_frac = atof(getCmdOption(input_str, input_str+in_num, "-sp_frac"));
if (sp_frac < 0) sp_frac = .01;
} else sp_frac = .01;
nlvl--;
int64_t all_lvl_ndiv=1;
for (int i=0; i<nlvl; i++){ all_lvl_ndiv *= ndiv; }
assert(n%all_lvl_ndiv == 0);
{
World dw(argc, argv);
if (rank == 0){
printf("Running algebraic smoothed multigrid method with %d levels with divisor %d in V-cycle, matrix dimension %ld, %d smooth iterations, decayed based on 3D indexing with decay exponent of %d\n",nlvl,ndiv,n,nsmooth, decay_exp);
printf("number of smoothing iterations per level is ");
for (int i=0; i<nlvl+1; i++){ printf("%d ",nsm[i]); }
printf("\n");
}
Matrix<REAL> A;
Matrix<REAL> * P;
Matrix<REAL> * PTAP;
Vector<REAL> b(n*n*n,dw,"b");
Vector<REAL> x(n*n*n,dw,"x");
if (poi){
setup_3d_Poisson(n, nlvl, ndiv, A, P, PTAP, dw);
int64_t * inds;
int64_t nloc;
REAL * vals;
b.get_local_data(&nloc, &inds, &vals);
int n1 = n+1;
REAL h = 1./(n1);
for (int64_t i=0; i<nloc; i++){
vals[i] = (1./(n1))*(1./(n1))*sin(h*M_PI*(1+(inds[i]/(n*n))))*sin(h*M_PI*(1+((inds[i]/n)%n)))*sin(h*M_PI*(1+(inds[i]%n)));
}
b.write(nloc,inds,vals);
for (int64_t i=0; i<nloc; i++){
vals[i] = (1./(3.*M_PI*M_PI))*sin(h*M_PI*(1+(inds[i]/(n*n))))*sin(h*M_PI*(1+((inds[i]/n)%n)))*sin(h*M_PI*(1+(inds[i]%n)));
}
Vector<REAL> x_t(n*n*n,dw,"x_t");
Vector<REAL> r(n*n*n,dw,"r");
x_t.write(nloc,inds,vals);
r["i"] = A["ij"]*x_t["j"];
r["i"] -= b["i"];
REAL tnorm = r.norm2();
if (dw.rank == 0) printf("Truncation error norm is %1.2E\n",tnorm);
x["i"] = x_t["i"];
Vector<REAL> rand(n*n*n,dw,"rand");
REAL tot = x["i"];
tot = tot/(n*n*n);
rand.fill_random(-tot*.1,tot*.1);
x["i"]+=rand["i"];
} else {
setup_unstructured(n, nlvl, sp_frac, ndiv, decay_exp, A, P, PTAP, dw);
b.fill_random(-1.E-1, 1.E-1);
}
pass = test_alg_multigrid(n*n*n, nlvl, nsm, A, b, x, P, PTAP);
// assert(pass);
}
MPI_Finalize();
return 0;
}
/**
* @}
* @}
*/
#endif