forked from MouseLightProject/carver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathview_carved_n5.py
63 lines (50 loc) · 2.73 KB
/
view_carved_n5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import z5py
import util
matplotlib.use('Qt5Agg')
def zero_based_ijk_from_xyz(sample_point_xyz, origin, spacing):
return (np.floor((sample_point_xyz - origin) / spacing)).astype('int')
octree_path = '/nrs/mouselight/SAMPLES/2018-10-01'
#n5_file_path = '/home/taylora/cache/gt/2018-10-01/navigator-output/test-swcs-carved.n5'
#n5_file_path = '/groups/scicompsoft/home/taylora/cache/gt/2018-10-01/navigator-output/test-swcs-carved.n5'
#offset = [75445.691517998261 16536.315191998805 36051.105973001562] # soma 1
#offset = np.array([75885.516008994338, 15382.253859001321, 35947.93727700039]) # soma 2
#sample_point_xyz_centered = [2074.0422090017528 -684.41304799880709 1333.5478669984368] ; # soma 1
#sample_point_xyz_centered = np.array([1157.5993180056539, 11.56324699867946, 1683.9443079996054]) # soma 2
#sample_point_xyz_centered = [738.19657500174071 -1424.7829449988058 702.41362699843739] ;
n5_file_path = '/nrs/mouselight/cluster/navigator-output/2018-10-01-tile-chunks-on-cluster/consensus-neurons-with-machine-centerpoints-labelled-as-swcs-carved.n5'
offset = np.array([75621.168080000323, 16211.625832000847, 36208.061435002361]) # G-040
sample_point_xyz_centered = np.array([-501.96361500032071, -1013.1980690008477, -4455.3761980023555]) # G-040 centerpoint 33650
# offset the sample point
sample_point_xyz = sample_point_xyz_centered + offset
#[origin, spacing] = load_transform_txt(fullfile(octree_path, 'transform.txt')) ;
params = util.readParameterFile(parameterfile = os.path.join(octree_path, 'calculated_parameters.jl'))
tile_level_count = params["nlevels"].astype(int)
tile_shape = params["leafSize"].astype(int)
origin = params["origin"]
spacing = params["spacing"]
sample_point_ijk = zero_based_ijk_from_xyz(sample_point_xyz, origin, spacing)
#half_diagonal = [512 512 128] ;
half_diagonal = (1024 * np.array([1, 1, 1/4])).astype('int')
stack_lower_corner = sample_point_ijk - half_diagonal
stack_shape = 2*half_diagonal
stack_upper_corner = stack_lower_corner + stack_shape
f = z5py.File(n5_file_path, 'r')
dset = f['volume']
shape = dset.shape
dtype = dset.dtype
raw_stack_4d = dset[stack_lower_corner[0]:stack_upper_corner[0],
stack_lower_corner[1]:stack_upper_corner[1],
stack_lower_corner[2]:stack_upper_corner[2],
0]
stack = np.squeeze(raw_stack_4d, axis=3)
slice = stack[:,:,256]
imgplot = plt.imshow(slice.T)
(m,n) = slice.shape
central_radius = 4
central_slice = slice[int(m/2)-central_radius:int(m/2)+central_radius, int(n/2)-central_radius:int(n/2)+central_radius]
imgplot2 = plt.imshow(central_slice.T)
plt.show()