-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreac_samp.py
executable file
·132 lines (114 loc) · 3.89 KB
/
reac_samp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2016, Carl Fields [email protected]
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# This program creates NxM indepently sampled nuclear reaction rate
# distributions where N is the number of rates in #the scheme and
# M is the number of samples.
### Imports
import numpy as np
import shutil,subprocess,os
from os import remove, close
from tempfile import mkstemp
from shutil import move
from shutil import copyfile
# Assumes rates to be included in sampling scheme are listed in './starlib_raw_rates/rates_list.txt'
rates_list = []
subprocess.call(['./get_rate_labels.sh'])
with open("rate_labels.txt") as f:
rates_list = [line.rstrip() for line in f]
os.remove('rate_labels.txt')
"""
# SAMPLING SCHEME USED IN FIELDS ET AL. 2016, APJ - http://arxiv.org/abs/1603.06666
rates_list = [
'r_h1_pg_h2',\
'r_h2_pg_he3',\
'r_he3_ag_be7',\
'r_li7_pn_be7',\
'r_be7_pg_b8',\
'r_c12_pg_n13',\
'r_c13_pg_n14',\
'r_n13_pg_o14',\
'r_n14_pg_o15',\
'r_n15_pa_c12',\
'r_n15_pg_o16',\
'r_o14_ap_f17',\
'r_o15_ag_ne19',\
'r_o16_pg_f17',\
'r_o17_pa_n14',\
'r_o17_pg_f18',\
'r_o18_pa_n15',\
'r_o18_pg_f19',\
'r_f17_pg_ne18',\
'r_f18_pa_o15',\
'r_f19_pa_o16',\
'r_o16_ag_ne20',\
'r_n14_ag_f18',\
'r_o18_ag_ne22',\
'r_c12_ag_o16',\
'r_he4_he4_he4_to_c12'\
]
"""
t9 = []
rr = []
fu = []
mu, sigma = 0., 1.0 # mean and standard deviation
def replace(file_path, pattern, subst):
#Create temp file
fh, abs_path = mkstemp()
with open(abs_path,'w') as new_file:
with open(file_path) as old_file:
for line in old_file:
new_file.write(line.replace(pattern, subst))
close(fh)
#Remove original file
remove(file_path)
#Move new file
move(abs_path, file_path)
# copy default directory and number it according to i'th variant
def make_dirs(N_var):
copyfile('./starlib_raw_rates/rates_list.txt','./default_work_dir/rate_tables/rates_list.txt' )
for i in range(1,N_var+1):
shutil.copytree('default_work_dir','example_grid/'+str(i))
return
# create array of p_i for sampling
def make_var_vec(N_var):
mu, sigma = 0., 1.0
var_vec = []
for i in range(len(rates_list)):
var_vec.append(np.random.normal(mu,sigma,N_var))
return var_vec
#use p_i to construct sampled rate distributions/place into i'th work directory
def make_var_rates(N_var):
t9 = []
rr = []
fu = []
var = np.array(make_var_vec(N_var))
rec = []
samp_ind = []
for i in range(1,N_var+1):
for j in range(len(rates_list)):
data=(np.loadtxt('starlib_raw_rates/'+str(rates_list[j])+'.txt',dtype=float, usecols=(0, 1,2),skiprows=1))
t9=(10.*data[:,0])
rr=(data[:,1])
fu=(data[:,2])
samp = var[j][i-1]
rate_var = (rr* (fu**(samp)) )
f = open('example_grid/'+str(i)+'/rate_tables/'+str(rates_list[j])+'.txt','w')
f.write('# '+str(rates_list[j])+' modified with var: '+str(samp)+'\n')
f.write('# T8 RATE \n')
f.write('60\n')
f.close()
with open('example_grid/'+str(i)+'/rate_tables/'+str(rates_list[j])+'.txt','a') as f_handle:
np.savetxt(f_handle, np.column_stack([t9, rate_var]),fmt=[' %1.2f\t',' %1.3E\t'])
rec.append(samp),samp_ind.append(j)
np.savetxt('rate_varitation_factors.txt', np.column_stack([samp_ind, rec]),fmt=['%i',' %1.8f\t'])
return