-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathheap.py
128 lines (97 loc) · 3.58 KB
/
heap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""heap.py - implementation of a heap priority queue. """
__author__ = "Caleb Madrigal"
__date__ = "2015-02-17"
import math
from enum import Enum
from autoresizelist import AutoResizeList
class HeapType(Enum):
maxheap = 1
minheap = 2
class Heap:
def __init__(self, initial_data=None, heap_type=HeapType.maxheap):
self.heap_type = heap_type
if heap_type == HeapType.maxheap:
self.comparator = lambda x, y: x > y
else:
self.comparator = lambda x, y: x < y
self.data = AutoResizeList()
if initial_data is not None:
self.build_heap(initial_data)
self._size = len(self.data)
def _left_child(self, index):
return 2*index + 1
def _right_child(self, index):
return 2*index + 2
def _parent(self, index):
return math.floor((index - 1) / 2.0)
def _is_root(self, index):
return index == 0
def _swap(self, i1, i2):
self.data[i1], self.data[i2] = self.data[i2], self.data[i1]
def build_heap(self, initial_data):
for i in initial_data:
self.data.prepend(i)
self.heap_down(0)
def heap_up(self, index):
# If we are at the root, return - we are done
if self._is_root(index):
return
# Else, compare the current node with the parent node, and if this node should be higher
# then the parent node, then swap and recursively call on the parent index
parent_index = self._parent(index)
if self.comparator(self.data[index], self.data[parent_index]):
self._swap(index, parent_index)
self.heap_up(parent_index)
def heap_down(self, index):
left_index = self._left_child(index)
right_index = self._right_child(index)
try:
left = self.data[left_index]
except IndexError:
left = None
try:
right = self.data[right_index]
except IndexError:
right = None
# Find the largest child
largest_child = left
largest_child_index = left_index
if left is not None and right is not None:
if self.comparator(right, left):
largest_child = right
largest_child_index = right_index
elif right is not None:
largest_child = right
largest_child_index = right_index
# If the largest child is not None and is higher priority than the current, then swap
# and recursively call on on the child index
if largest_child is not None and self.comparator(largest_child, self.data[index]):
self._swap(index, largest_child_index)
self.heap_down(largest_child_index)
def push(self, item):
insert_index = self._size # Insert at the end
self._size += 1
self.data[insert_index] = item
self.heap_up(insert_index)
return self
def peek(self):
return self.data[0]
def pop(self):
if len(self.data) < 1 or self.data[0] is None:
return None
# Take item from the root
item = self.data[0]
# Move the bottom-most, right-most item to the root
self.data[0] = self.data[self._size-1]
self.data[self._size-1] = None
self._size -= 1
self.heap_down(0)
return item
def size(self):
return self._size
def __repr__(self):
return str(self.data)
if __name__ == "__main__":
import unittest
testsuite = unittest.TestLoader().discover('test', pattern="*heap*")
unittest.TextTestRunner(verbosity=1).run(testsuite)