|
| 1 | +""" |
| 2 | +Replica and Streetlight Analysis Utils |
| 3 | +""" |
| 4 | + |
| 5 | +import pandas as pd |
| 6 | +from siuba import * |
| 7 | +import ast |
| 8 | + |
| 9 | +from calitp_data_analysis.sql import to_snakecase |
| 10 | + |
| 11 | +import altair as alt |
| 12 | +from calitp_data_analysis import calitp_color_palette as cp |
| 13 | + |
| 14 | + |
| 15 | +""" |
| 16 | +Replica Analysis Utils |
| 17 | +""" |
| 18 | +##function that returns Replica transit data into df we can analyze easier |
| 19 | +def get_tranist_agency_counts(df, primary_mode_col, transit_mode_col, transit_agency_col, activity_id_col): |
| 20 | + ## return a df with the agency counts |
| 21 | + agencies = (df |
| 22 | + >>filter(_[primary_mode_col] =="public_transit") |
| 23 | + >>group_by(_[primary_mode_col], _[transit_mode_col], _[transit_agency_col]) |
| 24 | + >>summarize(n =_[activity_id_col].nunique()) |
| 25 | + >>arrange(-_.n)) |
| 26 | + |
| 27 | + agencies[transit_mode_col] = agencies[transit_mode_col].astype(str) |
| 28 | + agencies[transit_agency_col] = agencies[transit_agency_col].astype(str) |
| 29 | + |
| 30 | + agencies['agency_count'] = [len(set(x.split(", "))) for x in |
| 31 | + agencies[transit_agency_col].str.lower()] |
| 32 | + agencies['n_modes_taken'] = agencies[transit_mode_col].apply(lambda x: len(x.split())) |
| 33 | + |
| 34 | + ## return a df with the mode counts |
| 35 | + modes = (df |
| 36 | + >>filter(_[primary_mode_col] =="public_transit") |
| 37 | + >>count(_[transit_mode_col])>>arrange(-_.n)) |
| 38 | + |
| 39 | + modes[transit_mode_col] = modes[transit_mode_col].astype(str) |
| 40 | + # modes[transit_agency_col] = modes[transit_agency_col].astype(str) |
| 41 | + |
| 42 | + modes['n_modes_taken'] = modes[transit_mode_col].apply(lambda x: len(x.split())) |
| 43 | + |
| 44 | + return agencies, modes |
| 45 | + |
| 46 | +def get_list_of_agencies(df, transit_agency_col): |
| 47 | + |
| 48 | + ## Get just one columns |
| 49 | + column = df[[transit_agency_col]] |
| 50 | + #remove single-dimensional entries from the shape of an array |
| 51 | + col_text = column.squeeze() |
| 52 | + # get list of words |
| 53 | + text_list = col_text.tolist() |
| 54 | + # #join list of words |
| 55 | + text_list = ', '.join(text_list).title() |
| 56 | + |
| 57 | + text_list = text_list.replace(", ", "', '") |
| 58 | + text_list = "['" + text_list + "']" |
| 59 | + |
| 60 | + agency_list = ast.literal_eval(text_list) |
| 61 | + agency_list = set(agency_list) |
| 62 | + |
| 63 | + return agency_list |
| 64 | + |
| 65 | +def get_dummies_by_agency(df, col): |
| 66 | + transit_agencies = set() |
| 67 | + for agencies in df[col].str.split(', '): |
| 68 | + transit_agencies.update(agencies) |
| 69 | + unique_agencies = [] |
| 70 | + |
| 71 | + for agency in transit_agencies: |
| 72 | + df[agency] = df[col].str.count(agency) |
| 73 | + unique_agencies.append(agency) |
| 74 | + |
| 75 | + ### adding column for unique agencies list |
| 76 | + def get_unique_agencies(agency_list): |
| 77 | + unique_agencies = set() |
| 78 | + for agencies in agency_list: |
| 79 | + unique_agencies.update(agencies.split(', ')) |
| 80 | + return ', '.join(sorted(list(unique_agencies))) |
| 81 | + |
| 82 | + # Applying the function to each row of the dataframe to get unique agencies |
| 83 | + df['unique_agencies'] = df[col].str.split(', ').apply(lambda x: get_unique_agencies(x)) |
| 84 | + |
| 85 | + return df |
| 86 | + |
| 87 | +def get_agencies_occurances(df): |
| 88 | + |
| 89 | + ##get list of columns that have agency names |
| 90 | + columns_to_keep = list(df.columns.values) |
| 91 | + |
| 92 | + ## remove columns that are not agency names |
| 93 | + unwanted_cols = {'transit_agency', 'unique_agencies', 'primary_mode', 'transit_submode', 'n', 'agency_count', 'n_modes_taken' } |
| 94 | + columns_to_keep = [e for e in columns_to_keep if e not in unwanted_cols] |
| 95 | + |
| 96 | + df_agencies = df.loc[:, columns_to_keep] |
| 97 | + |
| 98 | + ## transpose the df again |
| 99 | + df_agencies = pd.DataFrame(df_agencies).transpose().reset_index().rename(columns={'index':'agency'}) |
| 100 | + |
| 101 | + ##sum up the number of trips by agency |
| 102 | + df_agencies['n_trips'] = df_agencies[list(df_agencies.columns)].sum(axis=1) |
| 103 | + |
| 104 | + ## filter df to only have two cols |
| 105 | + df_agencies = df_agencies>>select(_.agency, _.n_trips) |
| 106 | + |
| 107 | + return df_agencies |
| 108 | + |
| 109 | +""" |
| 110 | +Streetlight Analysis Utils |
| 111 | +""" |
| 112 | + |
| 113 | + |
0 commit comments