-
Notifications
You must be signed in to change notification settings - Fork 11
/
wmma_3kers.cu
183 lines (150 loc) · 6.04 KB
/
wmma_3kers.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#define CUB_HALF_OPTIMIZATION 1
#include <benchmark/benchmark.h>
#include "init/init.hpp"
#include "prefixsum/args.hpp"
#include "utils/utils.hpp"
#include "kernel.cuh"
#include <cub/cub.cuh>
using namespace wmma_prefixsum;
template <int SEGMENT_SIZE, int WARPS_PER_BLOCK>
void tryCUDA_WMMA_FULL_PREFIXSUM_3KERS(benchmark::State &state) {
const int BLOCK_DIM = WARPS_PER_BLOCK * WARP_SIZE;
const size_t num_elements = state.range(0);
const size_t num_segments = (num_elements + SEGMENT_SIZE - 1) / SEGMENT_SIZE;
if (num_elements % SEGMENT_SIZE) {
state.SkipWithError("num_elements must be multiples of SEGMENT_SIZE");
return;
}
half *d_in_fp16 = nullptr;
half *d_out = nullptr;
half *partial_sums = nullptr;
PRINT_IF_ERROR(cudaMalloc(&d_in_fp16, num_elements * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&d_out, 1 * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&partial_sums, num_segments * sizeof(half)));
cuda_memory_set(d_in_fp16, 0.001f, num_elements);
dim3 gridDim, blockDim;
blockDim.x = BLOCK_DIM;
gridDim.x = (num_segments + WARPS_PER_BLOCK - 1) / WARPS_PER_BLOCK;
if (gridDim.x >= CUDA_MAX_GRID_SIZE) {
state.SkipWithError(
fmt::format("gridDim.x={} is greater than CUDA_MAX_GRID_SIZE", gridDim.x)
.c_str());
return;
}
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
PRINT_IF_ERROR(cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes,
partial_sums, partial_sums, num_segments));
PRINT_IF_ERROR(cudaMalloc(&d_temp_storage, temp_storage_bytes));
cudaEvent_t start, stop;
PRINT_IF_ERROR(cudaEventCreate(&start));
PRINT_IF_ERROR(cudaEventCreate(&stop));
defer(cudaEventDestroy(start));
defer(cudaEventDestroy(stop));
try {
for (auto _ : state) {
PRINT_IF_ERROR(cudaEventRecord(start));
compute_wmma_segmented_prefixsum_256n_ps<SEGMENT_SIZE, WARPS_PER_BLOCK, BLOCK_DIM>
<<<gridDim, blockDim>>>(d_in_fp16, d_out, partial_sums, num_segments);
cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, partial_sums,
partial_sums, num_segments);
add_partial_sums<256, SEGMENT_SIZE>
<<<num_segments, 256>>>(d_out, partial_sums, num_elements);
PRINT_IF_ERROR(cudaEventRecord(stop));
PRINT_IF_ERROR(cudaEventSynchronize(stop));
// state.SkipWithError("break");
state.PauseTiming();
float msecTotal = 0.0f;
PRINT_IF_ERROR(cudaEventElapsedTime(&msecTotal, start, stop));
state.SetIterationTime(msecTotal / 1000);
state.ResumeTiming();
}
state.counters.insert({{"num_elements", num_elements},
{"num_segments", num_segments},
{"segment_size", SEGMENT_SIZE},
{"warps_per_block", WARPS_PER_BLOCK},
{"flops",
{state.iterations() * 1.0 * num_elements,
benchmark::Counter::kAvgThreadsRate}}});
#if 0
half *h_out = new half[num_elements];
PRINT_IF_ERROR(cudaMemcpy(h_out, d_out, num_elements * sizeof(half),
cudaMemcpyDeviceToHost));
int errors = 0;
float correct_sum = 0;
for (int i = 0; i < num_elements; i++) {
correct_sum += h_in[i];
if (fabs(half_to_float(h_out[i]) - correct_sum) > 0.1) {
errors++;
if (errors < 10) {
printf("Expected %f, get h_out[%d] = %f\n", correct_sum, i,
half_to_float(h_out[i]));
}
}
}
if (errors > 0) {
printf("CUDA_PREFIXSUM_WMM does not agree with SEQUENTIAL! %d errors!\n",
errors);
} else {
printf("Results verified: they agree.\n\n");
}
#if 0
half h_partial_sums[num_segments];
PRINT_IF_ERROR(cudaMemcpy(h_partial_sums, partial_sums,
sizeof(half) * num_segments,
cudaMemcpyDeviceToHost));
for (int i = 0; i < num_segments; i++) {
printf("-------partial_sums[%d] = %f\n", i,
half_to_float(h_partial_sums[i]));
}
delete h_out;
#endif
#endif
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaFree(partial_sums);
cudaFree(d_temp_storage);
} catch (...) {
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaFree(partial_sums);
cudaFree(d_temp_storage);
cudaDeviceReset();
const auto p = std::current_exception();
std::rethrow_exception(p);
}
}
template <int SEGMENT_SIZE, int WARPS_PER_BLOCK>
void CUDA_WMMA_FULL_PREFIXSUM_3KERS(benchmark::State &state) {
cudaDeviceReset();
try {
tryCUDA_WMMA_FULL_PREFIXSUM_3KERS<SEGMENT_SIZE, WARPS_PER_BLOCK>(state);
} catch (const std::exception &e) {
state.SkipWithError(e.what());
} catch (const std::string &e) {
state.SkipWithError(e.c_str());
} catch (...) {
state.SkipWithError("unknown exception");
}
}
#define BENCHMARK_PRIFIXSUM0(SEGMENT_SIZE, WARPS_PER_BLOCK) \
BENCHMARK_TEMPLATE(CUDA_WMMA_FULL_PREFIXSUM_3KERS, SEGMENT_SIZE, WARPS_PER_BLOCK) \
->ARGS() \
->UseManualTime()
#define BENCHMARK_PRIFIXSUM(SEGMENT_SIZE) \
BENCHMARK_PRIFIXSUM0(SEGMENT_SIZE, 1); \
BENCHMARK_PRIFIXSUM0(SEGMENT_SIZE, 2); \
BENCHMARK_PRIFIXSUM0(SEGMENT_SIZE, 4); \
BENCHMARK_PRIFIXSUM0(SEGMENT_SIZE, 8); \
BENCHMARK_PRIFIXSUM0(SEGMENT_SIZE, 16)
BENCHMARK_PRIFIXSUM(256);
BENCHMARK_PRIFIXSUM(2 * 256);
BENCHMARK_PRIFIXSUM(4 * 256);
BENCHMARK_PRIFIXSUM(8 * 256);
BENCHMARK_PRIFIXSUM(16 * 256);
/* BENCHMARK_PRIFIXSUM(32 * 256); */
/* BENCHMARK_PRIFIXSUM(64 * 256); */
/* BENCHMARK_PRIFIXSUM(128 * 256); */
/* BENCHMARK_PRIFIXSUM(256 * 256); */
/* BENCHMARK_PRIFIXSUM(512 * 256); */
/* BENCHMARK_PRIFIXSUM(1024 * 256); */