-
Notifications
You must be signed in to change notification settings - Fork 11
/
wmma_sharedmem.cu
237 lines (185 loc) · 8.37 KB
/
wmma_sharedmem.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include <benchmark/benchmark.h>
#include "gemv/args.hpp"
#include "init/init.hpp"
#include "utils/utils.hpp"
#include <mma.h>
using namespace nvcuda;
#ifndef WARP_SIZE
#define WARP_SIZE (32)
#endif // WARP_SIZE
// MMA matrix tile dimensions. (16, 16, 16), (32, 8, 16), and (8, 32, 16) are
// currently supported.
static const int M = 16;
static const int N = 16;
static const int K = 16;
// Implementation constants.
// number of warps needed for col and row in one block
static const int BLOCK_COL_WARPS = 1;
static const int BLOCK_ROW_WARPS = 9;
// number of WMMA tiles (16 X 16) processed by one warp
static const int WARP_COL_TILES = 1;
static const int WARP_ROW_TILES = 1;
// number of WMMA tiles for col and rwo in one block
static const int BLOCK_COL_TILES = WARP_COL_TILES * BLOCK_COL_WARPS;
static const int BLOCK_ROW_TILES = WARP_ROW_TILES * BLOCK_ROW_WARPS;
// number of warps and threads in one block
static const int WARPS_PER_BLOCK = BLOCK_ROW_WARPS * BLOCK_COL_WARPS;
static const int THREADS_PER_BLOCK = WARP_SIZE * WARPS_PER_BLOCK;
// each block processes one tile at a time
static const int TILE_WIDTH_M = BLOCK_ROW_TILES * M;
static const int TILE_WIDTH_N = BLOCK_COL_TILES * N; // TILE_WIDTH_N <= TILE_WIDTH_M
static const int TILE_WIDTH_K = TILE_WIDTH_M; // TILE_WIDTH_K <= TILE_WIDTH_M
static __global__ void compute_wmma_gemv_sharedmem(const half *__restrict__ a,
const half *__restrict__ b, float *c,
int M_GLOBAL, int N_GLOBAL,
int K_GLOBAL, float alpha,
float beta) {
__shared__ half subTileA[TILE_WIDTH_K][TILE_WIDTH_M];
__shared__ half subTileB[TILE_WIDTH_N][TILE_WIDTH_K];
int tx = threadIdx.x;
// int ty = 0; // threadIdx.y;
int tid = tx; // threadIdx.y * blockDim.x + threadIdx.x; // thread id in the block
int aRow = blockIdx.x * TILE_WIDTH_M; // staring row of the current block in matrix A
// int bCol = 0; // blockIdx.y * TILE_WIDTH_N; // staring col of the current
// block in matrix B
// Declare the fragments
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::col_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, M, N, K, float> acc_frag;
wmma::fragment<wmma::accumulator, M, N, K, float> c_frag;
wmma::fill_fragment(acc_frag, 0.0f);
for (int k = 0; k < K_GLOBAL; k += TILE_WIDTH_K) {
// Collaborative loading of M tiles into shared memory
for (int i = 0; i < TILE_WIDTH_M * TILE_WIDTH_K; i += THREADS_PER_BLOCK) {
int idx = (tid + i);
int aX = idx % TILE_WIDTH_M;
int aY = idx / TILE_WIDTH_M;
if (((k + aY) < K_GLOBAL) && ((aRow + aX) < M_GLOBAL)) {
subTileA[aY][aX] = a[(k + aY) * M_GLOBAL + aRow + aX];
} else {
subTileA[aY][aX] = half(0);
}
}
// Collaborative loading N tiles into shared memory
for (int i = 0; i < TILE_WIDTH_K * TILE_WIDTH_N; i += THREADS_PER_BLOCK) {
int idx = (tid + i);
int bX = idx % TILE_WIDTH_K;
int bY = idx / TILE_WIDTH_K;
if ((bY < N_GLOBAL) && ((k + bX) < K_GLOBAL)) {
subTileB[bY][bX] = b[bY * K_GLOBAL + k + bX];
// subTileB[bY][bX] = (((bCol + bY) < N_GLOBAL) && ((k + bX) <
// K_GLOBAL)) ? b[(bCol + bY) * K_GLOBAL + k + bX] : half(0);
} else {
subTileB[bY][bX] = half(0);
}
}
__syncthreads();
for (int i = 0; i < TILE_WIDTH_K; i += K) {
int subtileARow = M * (threadIdx.x / WARP_SIZE);
int subtileACol = i;
int subtileBRow = i;
// int subtileBCol = 0; // N * threadIdx.y;
// Load the inputs
wmma::load_matrix_sync(a_frag,
(half *) subTileA + subtileARow + subtileACol * TILE_WIDTH_M,
TILE_WIDTH_M);
wmma::load_matrix_sync(b_frag, (half *) subTileB + subtileBRow, TILE_WIDTH_K);
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
}
}
// Load in the current value of c, scale it by beta, and add this our result
// scaled by alpha
int warpM = (blockIdx.x * blockDim.x + tx) / WARP_SIZE;
// int warpN = 0; // blockIdx.y * blockDim.y + ty;
int cRow = warpM * M;
// int cCol = 0; // warpN * N;
if (cRow < M_GLOBAL) {
wmma::load_matrix_sync(
c_frag, c + cRow, M_GLOBAL,
wmma::mem_col_major); // wmma::load_matrix_sync(c_frag, c + cRow + cCol
// * K_GLOBAL, M_GLOBAL, wmma::mem_col_major);
for (int i = 0; i < c_frag.num_elements; i++) {
c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
}
// Store the output
wmma::store_matrix_sync(c + cRow, c_frag, K_GLOBAL,
wmma::mem_col_major); // wmma::store_matrix_sync(c + cRow +
// cCol * K_GLOBAL, c_frag, K_GLOBAL,
// wmma::mem_col_major);
}
}
static void CUDA_WMMA_GEMV_SHAREDMEM(benchmark::State &state) {
const auto M_GLOBAL = state.range(0);
const auto K_GLOBAL = state.range(1);
const auto N_GLOBAL = BLOCK_COL_TILES * N;
const float alpha = 1.1f;
const float beta = 1.2f;
float *a_fp32;
float *x_fp32;
float *y;
half *a_fp16;
half *x_fp16;
half *b_fp16;
PRINT_IF_ERROR(cudaMalloc((void **) &a_fp32, M_GLOBAL * K_GLOBAL * sizeof(float)));
PRINT_IF_ERROR(cudaMalloc((void **) &x_fp32, K_GLOBAL * sizeof(float)));
PRINT_IF_ERROR(cudaMalloc((void **) &y,
M_GLOBAL * N_GLOBAL *
sizeof(float))); // the first column holds the result
PRINT_IF_ERROR(cudaMalloc((void **) &a_fp16, M_GLOBAL * K_GLOBAL * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc((void **) &x_fp16, K_GLOBAL * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc((void **) &b_fp16, K_GLOBAL * N_GLOBAL * sizeof(half)));
curandGenerator_t gen;
PRINT_IF_ERROR(curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT));
PRINT_IF_ERROR(curandSetPseudoRandomGeneratorSeed(gen, 1337ULL));
PRINT_IF_ERROR(curandGenerateUniform(gen, a_fp32, M_GLOBAL * N_GLOBAL));
PRINT_IF_ERROR(curandGenerateUniform(gen, x_fp32, N_GLOBAL));
PRINT_IF_ERROR(curandGenerateUniform(gen, y, M_GLOBAL));
PRINT_IF_ERROR(curandDestroyGenerator(gen));
// curand doesn't currently support fp16 so we generate in fp32 and convert to
// fp16.
PRINT_IF_LAUNCH_ERROR((convertFp32ToFp16<<<(M_GLOBAL * K_GLOBAL + 255) / 256, 256>>>(
a_fp16, a_fp32, M_GLOBAL * K_GLOBAL)));
PRINT_IF_LAUNCH_ERROR(
(convertFp32ToFp16<<<(N_GLOBAL + 255) / 256, 256>>>(x_fp16, x_fp32, K_GLOBAL)));
// copy vector x to matrix b, column-major
PRINT_IF_ERROR(
cudaMemcpy(b_fp16, x_fp16, K_GLOBAL * sizeof(half), cudaMemcpyDeviceToDevice));
cudaEvent_t start, stop;
PRINT_IF_ERROR(cudaEventCreate(&start));
PRINT_IF_ERROR(cudaEventCreate(&stop));
dim3 gridDim;
dim3 blockDim;
blockDim.x = BLOCK_ROW_TILES * WARP_SIZE;
blockDim.y = BLOCK_COL_TILES;
gridDim.x = (M_GLOBAL + (M * BLOCK_ROW_TILES - 1)) / (M * BLOCK_ROW_TILES);
gridDim.y = (N_GLOBAL + N * BLOCK_COL_TILES - 1) / (N * BLOCK_COL_TILES); // 1
for (auto _ : state) {
PRINT_IF_ERROR(cudaEventRecord(start));
(compute_wmma_gemv_sharedmem<<<gridDim, blockDim>>>(a_fp16, b_fp16, y, M_GLOBAL,
N_GLOBAL, K_GLOBAL, alpha, beta));
PRINT_IF_ERROR(cudaEventRecord(stop));
PRINT_IF_ERROR(cudaEventSynchronize(stop));
state.PauseTiming();
float msecTotal = 0.0f;
PRINT_IF_ERROR(cudaEventElapsedTime(&msecTotal, start, stop));
state.SetIterationTime(msecTotal / 1000);
state.ResumeTiming();
}
cudaEventDestroy(start);
cudaEventDestroy(stop);
PRINT_IF_ERROR(cudaFree(a_fp32));
PRINT_IF_ERROR(cudaFree(x_fp32));
PRINT_IF_ERROR(cudaFree(y));
PRINT_IF_ERROR(cudaFree(a_fp16));
PRINT_IF_ERROR(cudaFree(x_fp16));
PRINT_IF_ERROR(cudaFree(b_fp16));
cudaDeviceReset();
state.counters.insert({{"M", M_GLOBAL},
{"N", K_GLOBAL},
{"num_elements", M_GLOBAL * K_GLOBAL},
{"flops",
{state.iterations() * 2.0 * M_GLOBAL * K_GLOBAL,
benchmark::Counter::kAvgThreadsRate}}});
}
// BENCHMARK(CUDA_WMMA_GEMV_SHAREDMEM)->ARGS()->UseManualTime();