-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSupporting-Hiperplane-Theorem.tex
148 lines (129 loc) · 6.86 KB
/
Supporting-Hiperplane-Theorem.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
\documentclass{beamer}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{bibliography item}[text]
\usepackage{beamerthemeshadow}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\graphicspath{ {./images/} }
\begin{document}
\title{Supporting Hyperplane Theorem}
\author{Coman Florin-Alexandru}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}\frametitle{Table of contents}\tableofcontents
\end{frame}
\section{Hyperplanes}
\subsection{Introduction}
\begin{frame}\frametitle{Hyperplanes}
\begin{block}{Introduction}
Hyperplanes dominate the entire theory of optimization; appearing in Lagrange multipliers, duality theory, gradient calculations, etc. The most natural definition for a hyperplane is the generalization of a plane in $\mathbb{R}^3.$
\end{block}
\end{frame}
\subsection{Definition}
\begin{frame}\frametitle{Hyperplanes}
\begin{block}{Linear variety}
A set $V$ in $\mathbb{R}^n$ is said to be \textbf{linear variety}, if, given any $x_1, x_2 \in V$, we have $\alpha x_1 + (1 - \alpha) x_2 \in V, \forall \alpha \in \mathbb{R}.$ \\
The only difference between a linear variety and a convex set is that a linear variety is the entire line passing through any two points, rather than a simple line segment.
\end{block}
\begin{block}{Definition - Hyperplane}
A \textbf{hyperplane} in $\mathbb{R}^n$ is an $(n-1)$-dimensional linear variety. It can be regarded as the largest linear variety in a space other than the entire space itself.
\end{block}
\end{frame}
\subsection{Properties}
\begin{frame}\frametitle{Hyperplanes}
\begin{block}{Proposition 1.1}
Let $a \in \mathbb{R}^n, a \neq \mathit{\Theta}$ and $b \in \mathbb{R}$. The set \\
\centerline{$H = \lbrace x \in \mathbb{R}^n : a^T x = b \rbrace$}
is a \textit{hyperplane} in $\mathbb{R}^n.$
\end{block}
\begin{block}{Proof}
Let $x_1 \in H$. Translate $H$ by $-x_1$, we obtain the set\\
\centerline{$M = H - x_1 = \lbrace y \in \mathbb{R}^n : \exists x \in H \ni y = x - x_1 \rbrace,$}
which is a linear subspace of $\mathbb{R}^n$. $M = \lbrace y \in \mathbb{R}^n : a^T y = 0 \rbrace$ is also the set of all orthogonal vectors to $a \in \mathbb{R}^n$, which is clearly $(n - 1)$ dimensional.
\end{block}
\end{frame}
\begin{frame}\frametitle{Hyperplanes}
\begin{block}{Proposition 1.2}
Let $x_1 \in H$ be an hyperplane in $\mathbb{R}^n$. Then, $\exists a \in \mathbb{R}^n \ni H = \lbrace x \in \mathbb{R} : a^T x = b \rbrace$.
\end{block}
\begin{block}{Proof}
Let $x_1 \in H$, and translate $-x_1$ obtaining $M = H - x_1$. Since $H$ is a hyperplane, $M$ is an $(n - 1)$ dimensional space. Let $a$ be any orthogonal to $M$, i.e. $a \in M^\bot$. Thus, $M = \lbrace y \in \mathbb{R}^n : a^T y = 0 \rbrace$. Let $b = a^T x_1$; we see that if $x_2 \in H, x_2 - x_1 \in M$ and therefore $a^T x_2 - a^T x_1 = 0 \Rightarrow a^T x_2 = b$. Hence, $H \subset x \in \mathbb{R} : a^T x = b$. Since $H$ is, by definition, of $(n - 1)$ dimension, and $\lbrace x\in \mathbb{R} : a^T x = b \rbrace$ is of dimension $(n - 1)$ by the above proposition, these two sets must be equal.
\end{block}
\end{frame}
\section{Half Space}
\subsection{Definition}
\begin{frame}{Half Space}
\begin{block}{Definition}
Let $a \in \mathbb{R}^n, b \in \mathbb{R}$. Corresponding to the hyperplane $H = \lbrace x : a^T x = b \rbrace$, there are \textbf{positive} and \textbf{negative closed half spaces}:
\centerline{$H_+ = \lbrace x : a^T x \geq b \rbrace, H_- = \lbrace x : a^T x \leq b \rbrace$}
and
\centerline{$\dot{H}_+ = \lbrace x : a^T x > b \rbrace, \dot{H}_- = \lbrace x : a^T x < b \rbrace.$}
Half spaces are convex sets and $H_+ \bigcup H_- = \mathbb{R}^n.$
\end{block}
\end{frame}
\section{Separating Hyperplane}
\subsection{Theorem}
\begin{frame}{Separating Hyperplane Theorem}
\begin{block}{Separating Hyperplane Theorem}
Let $X$ be a convex set and $y$ be a point exterior to the closure of $X$. Then, there exists a vector $a \in \mathbb{R}^n \ni a^T y < inf_{x \in X} a^T x$. \\
(Geometrically, a given point $y$ outside $X$, a \textbf{separating} hyperplane can be passed through the point $y$ that does not touch $X$).
\end{block}
\begin{figure}[h]
\includegraphics[width=4cm]{picture1}
\end{figure}
\end{frame}
\subsection{Proof}
\begin{frame}{Separating Hyperplane Theorem}
\begin{block}{Proof (I) \cite{1}}
Let $\delta = inf_{x \in X} |x - y| > 0.$ \\
Then, there is an $x_0$ on the boundary of $X$ such that $|x_0 - y| = \delta.$ \\
Let $z \in X$. Then, $\forall \alpha, 0 \leq \alpha \leq 1, x_0 + \alpha (z - x_0)$ is the line segment between $x_0$ and $z$. \\
Thus, by definition of $x_0$, $|x_0 + \alpha (z - x_0) - y|^2 \geq |x_0 - y|^2 \Leftrightarrow$ \\
$(x_0 - y)^T (x_0 - y) + 2 \alpha (x_0 - y)^T (z - x_0) + \alpha^2 (z - x_0)^T (z - x_0) \geq (x_0 - y)^T (x_0 - y) \Leftrightarrow$ \\
$2 \alpha (x_0 - y)^T (z - x_0) + \alpha^2 |z - x_0|^2 \geq 0$ \\
Let $\alpha \to 0^+$, then $\alpha^2$ tends to 0 more rapidly than $2 \alpha$. \\
\end{block}
\end{frame}
\begin{frame}{Separating Hyperplane Theorem}
\begin{block}{Proof (II)}
Thus, $(x_0 - y)^T (z - x_0) \geq 0 \Leftrightarrow$ \\
$(x_0 - y)^T z - (x_0 - y)^T x_0 \geq 0 \Leftrightarrow$ \\
$(x_0 - y)^T z \geq (x_0 - y)^T x_0 = (x_0 - y)^T y + (x_0 + y)^T (x_0 - y) = (x_0 - y)^T y + \delta^2 \Leftrightarrow$ \\
$(x_0 - y)^T y < (x_0 - y)^T x_0 \geq (x_0 -y)^T z, \forall z \in X$ (Since $\delta > 0$). \\
Let $a = (x_0 - y)$, then \\
$a^T y < a^T x_0 = inf_{z \in X} a^T z.$
\begin{flushright}$\square$\end{flushright}
\end{block}
\end{frame}
\section{Supporting Hyperplane}
\subsection{Thorem}
\begin{frame}{Supporting Hyperplane Theorem}
\begin{block}{Supporting Hyperplane Theorem}
Let $X$ be a convex set, and let $y$ be a boundary point of $X$. Then, there is a hyperplane containing $y$ and containing $X$ in one of its closed half spaces.
\end{block}
\end{frame}
\subsection{Proof}
\begin{frame}{Supporting Hyperplane Theorem}
\begin{block}{Proof \cite{1}}
Let $\lbrace y_k \rbrace$ be sequence of vectors, exterior to the closure of $X$, converging to $y$. \\
Let $\lbrace a_k \rbrace$ be a sequence of corresponding vectors constructed according to the previous theorem, normalized so that $|a_k| = 1$, such that $a_k^T y_k < inf_{x \in X}.$ \\
Since $\lbrace a_k \rbrace$ is a boundary sequence, it converges to $a$. \\
For this vector, we have $a^T y = lim a_k^T y_k \leq a x.$
\begin{flushright}$\square$\end{flushright}
\end{block}
\end{frame}
\subsection{Definition}
\begin{frame}{Supporting Hyperplane Theorem}
\begin{block}{Definition}
A hyperplane containing a convex set $X$ in one of its closed half spaces and containing a boundary point of $X$ is said to be \textbf{supporting hyperplane} of $X$.
\end{block}
\end{frame}
\section{Bibliography}
\begin{frame}[allowframebreaks]
\frametitle{Bibliography}
\tiny{\bibliographystyle{abbrv} }
\bibliography{main}
\end{frame}
\end{document}