forked from rasbt/LLMs-from-scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretraining_simple.py
236 lines (197 loc) · 9.12 KB
/
pretraining_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
"""
Script for pretraining a small GPT-2 124M parameter model
on books from Project Gutenberg.
Before running this script, make sure you downloaded and
processed the dataset as described in the README.md.
"""
import argparse
import os
from pathlib import Path
import time
import tiktoken
import torch
from previous_chapters import (
create_dataloader_v1,
GPTModel,
generate_and_print_sample,
calc_loss_batch,
evaluate_model,
plot_losses
)
def read_text_file(file_path):
with open(file_path, "r", encoding="utf-8") as file:
text_data = file.read()
return text_data
def create_dataloaders(text_data, train_ratio, batch_size, max_length, stride, num_workers=0):
split_idx = int(train_ratio * len(text_data))
train_loader = create_dataloader_v1(
text_data[:split_idx],
batch_size=batch_size,
max_length=max_length,
stride=stride,
drop_last=True,
shuffle=True,
num_workers=num_workers
)
val_loader = create_dataloader_v1(
text_data[split_idx:],
batch_size=batch_size,
max_length=max_length,
stride=stride,
drop_last=False,
shuffle=False,
num_workers=num_workers
)
return train_loader, val_loader
def convert_time(seconds):
hours, rem = divmod(seconds, 3600)
minutes, seconds = divmod(rem, 60)
return int(hours), int(minutes), int(seconds)
def print_eta(start_time, book_start_time, index, total_files):
book_end_time = time.time() # End time of processing this book
elapsed_time = book_end_time - book_start_time
total_elapsed_time = book_end_time - start_time
books_remaining = total_files - index
average_time_per_book = total_elapsed_time / index
eta = average_time_per_book * books_remaining
book_h, book_m, book_s = convert_time(elapsed_time)
total_h, total_m, total_s = convert_time(total_elapsed_time)
eta_h, eta_m, eta_s = convert_time(eta)
print(f"Book processed {book_h}h {book_m}m {book_s}s"
f"\nTotal time elapsed {total_h}h {total_m}m {total_s}s"
f"\nETA for remaining books: {eta_h}h {eta_m}m {eta_s}s")
def train_model_simple(model, optimizer, device, n_epochs,
eval_freq, eval_iter, print_sample_iter, start_context,
output_dir, save_ckpt_freq, tokenizer,
batch_size=1024, train_ratio=0.90):
train_losses, val_losses, track_tokens_seen = [], [], []
tokens_seen = 0
global_step = -1
start_time = time.time()
try:
for epoch in range(n_epochs):
# Iterate over the books in the training corpus
for index, file_path in enumerate(all_files, 1):
book_start_time = time.time()
text_data = read_text_file(file_path) + " <|endoftext|> "
print(f"Tokenizing file {index} of {total_files}: {file_path}")
# Initialize new data loaders for each book
train_loader, val_loader = create_dataloaders(
text_data,
train_ratio=train_ratio,
batch_size=batch_size,
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"],
num_workers=0
)
print("Training ...")
model.train()
for input_batch, target_batch in train_loader:
optimizer.zero_grad()
loss = calc_loss_batch(input_batch, target_batch, model, device)
loss.backward()
optimizer.step()
tokens_seen += input_batch.numel()
global_step += 1
# Optional evaluation step
if global_step % eval_freq == 0:
train_loss, val_loss = evaluate_model(
model, train_loader, val_loader, device, eval_iter)
train_losses.append(train_loss)
val_losses.append(val_loss)
track_tokens_seen.append(tokens_seen)
print(f"Ep {epoch+1} (Step {global_step}): "
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
# Generate text passage
if global_step % print_sample_iter == 0:
generate_and_print_sample(
model, tokenizer, device, start_context
)
if global_step % save_ckpt_freq:
file_name = output_dir / f"model_pg_{global_step}.pth"
torch.save(model.state_dict(), file_name)
print(f"Saved {file_name}")
print_eta(start_time, book_start_time, index, total_files)
except KeyboardInterrupt:
file_name = output_dir / f"model_pg_{global_step}_interrupted.pth"
torch.save(model.state_dict(), file_name)
print(f"Saved {file_name}")
return train_losses, val_losses, track_tokens_seen
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='GPT Model Training Configuration')
parser.add_argument('--data_dir', type=str, default='gutenberg/data',
help='Directory containing the training data')
parser.add_argument('--output_dir', type=str, default='model_checkpoints',
help='Directory where the model checkpoints will be saved')
parser.add_argument('--n_epochs', type=int, default=1,
help='Number of epochs to train the model')
parser.add_argument('--print_sample_iter', type=int, default=1000,
help='Iterations between printing sample outputs')
parser.add_argument('--eval_freq', type=int, default=100,
help='Frequency of evaluations during training')
parser.add_argument('--save_ckpt_freq', type=int, default=100_000,
help='Frequency of saving model checkpoints during training')
parser.add_argument('--lr', type=float, default=5e-4,
help='Learning rate for the optimizer')
parser.add_argument('--batch_size', type=int, default=4,
help='Batch size for training')
parser.add_argument('--debug', type=bool, default=False,
help='Uses a very small model for debugging purposes')
args = parser.parse_args()
if args.debug:
GPT_CONFIG_124M = {
"vocab_size": 50257, # Vocabulary size
"context_length": 10, # Context length
"emb_dim": 12, # Embedding dimension
"n_heads": 2, # Number of attention heads
"n_layers": 2, # Number of layers
"drop_rate": 0.0, # Dropout rate, deactivated via 0.0 as dropout in LLMs is not recommended anymore
"qkv_bias": False # Query-key-value bias
}
else:
GPT_CONFIG_124M = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"emb_dim": 768, # Embedding dimension
"n_heads": 12, # Number of attention heads
"n_layers": 12, # Number of layers
"drop_rate": 0.1, # Dropout rate
"qkv_bias": False # Query-key-value bias
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(123)
model = GPTModel(GPT_CONFIG_124M)
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.1)
tokenizer = tiktoken.get_encoding("gpt2")
data_dir = args.data_dir
all_files = [os.path.join(path, name) for path, subdirs, files
in os.walk(data_dir) for name in files if name.endswith((".txt"))]
total_files = len(all_files)
if total_files == 0:
print("No training text files found. Make sure you "
"selected the correct input directory")
quit()
print("Total files:", total_files)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
train_losses, val_losses, tokens_seen = train_model_simple(
model, optimizer, device,
batch_size=args.batch_size,
n_epochs=args.n_epochs,
eval_freq=args.eval_freq,
eval_iter=1,
print_sample_iter=args.print_sample_iter,
output_dir=output_dir,
save_ckpt_freq=args.save_ckpt_freq,
start_context="Every effort moves you",
tokenizer=tokenizer
)
epochs_tensor = torch.linspace(0, args.n_epochs, len(train_losses))
plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses, output_dir)
torch.save(model.state_dict(), output_dir / "model_pg_final.pth")
print(f"Maximum GPU memory allocated: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB")