Skip to content

Commit 6ceb373

Browse files
committed
first commit
1 parent 1734517 commit 6ceb373

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

52 files changed

+20032
-1
lines changed

.gitignore

-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,4 @@
11
**/node_modules
22
**/rs-env
33
**/bb-env
4-
**/
54
llm-rag-vectordb-python/image-generation-node-js-app/src/frontend/node_modules/*

building-bonds/.gitignore

+4
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
**/.env
2+
**/bb-env/
3+
**/.DS_Store
4+
**/.DS_Store/

building-bonds/README.md

+69
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,69 @@
1+
# Building Bonds: The Power of Ice-Breakers
2+
3+
![Application Banner](/llm-rag-vectordb-python/building-bonds/boundbuilding.gif)
4+
5+
Welcome to **Building Bonds**, a Streamlit application that harnesses the strengths of Amazon Bedrock and LangChain. Make your introductions more memorable! Enter a name, and let our application search for their LinkedIn profile, then provide you with a concise summary and ice-breaking facts about that person.
6+
7+
## Features
8+
9+
1. **Instant LinkedIn Search**: Just provide a name, and the application will try to locate their LinkedIn profile from the internet.
10+
2. **Automated Summary**: With the capabilities of Amazon Bedrock and LangChain, receive a detailed overview of the person's career and accomplishments.
11+
3. **Ice-Breaker Facts**: Start your conversation with a bang! Learn unique and engaging facts related to the individual.
12+
13+
## How It Works
14+
15+
The magic behind **Building Bonds**:
16+
17+
- **Amazon Bedrock**: Empowers our system to deep dive into data and bring out meaningful insights.
18+
- **LangChain**: Assists with linguistic processing, allowing the app to draw a clear and engaging summary from LinkedIn details.
19+
20+
## Getting Started
21+
22+
### **1. Pre-requisites**
23+
24+
- Clone the repository to your local machine.
25+
- Create a `.env` file in the project directory using `env.example` as a reference. Populate the `.env` file with your Proxycurl and Serpa API Key details:
26+
27+
```bash
28+
PROXYCURL_API_KEY=<YOUR API KEY>
29+
SERPAPI_API_KEY=<YOUR API KEY>
30+
```
31+
32+
### **2. Setting Up a Virtual Environment**
33+
34+
Use `virtualenv` to create an isolated Python environment:
35+
36+
1. Install `virtualenv`:
37+
```bash
38+
pip install virtualenv
39+
```
40+
41+
2. Navigate to the directory where you cloned the repository.
42+
43+
3. Initialize the virtual environment:
44+
```bash
45+
virtualenv bb-env
46+
```
47+
48+
4. Activate the environment:
49+
```bash
50+
source bb-env/bin/activate
51+
```
52+
53+
### **3. Installing Dependencies**
54+
55+
With your virtual environment active, install the necessary packages:
56+
57+
```bash
58+
pip install -r requirements.txt
59+
```
60+
61+
This command installs all dependencies from the `requirements.txt` file into your `rs-env` environment.
62+
63+
### **4. Usage**
64+
65+
Launch the application using Streamlit:
66+
67+
```bash
68+
streamlit run app.py
69+
```

building-bonds/agents/__init__.py

Whitespace-only changes.
Binary file not shown.
Binary file not shown.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,46 @@
1+
from tools.tools import get_profile_url
2+
from dotenv import load_dotenv
3+
from langchain import PromptTemplate
4+
from langchain.llms.bedrock import Bedrock
5+
from langchain.agents import initialize_agent, Tool, AgentType
6+
import re
7+
8+
9+
10+
11+
def get_llm():
12+
13+
bedrock_llm = Bedrock(model_id="anthropic.claude-v2",
14+
model_kwargs={"temperature": 0.1,"max_tokens_to_sample": 4096})
15+
16+
return bedrock_llm
17+
18+
def lookup(name: str) -> str:
19+
load_dotenv()
20+
21+
template = """given the full name {name_of_person} I want you to get it me a link to their Linkedin profile page.
22+
Your answer should contain only a URL of the LinkedIN profile"""
23+
24+
tools_for_agent = [
25+
Tool(
26+
name="Crawl Google 4 linkedin profile page",
27+
func=get_profile_url,
28+
description="useful for when you need get the Linkedin Page URL",
29+
),
30+
]
31+
llm = get_llm()
32+
agent_chain = initialize_agent(tools_for_agent, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
33+
34+
prompt_template = PromptTemplate(
35+
input_variables=["name_of_person"], template=template
36+
)
37+
38+
# Get the LLM's output
39+
try:
40+
linkedin_username = agent_chain.run(handle_parsing_errors=True, input=prompt_template.format_prompt(name_of_person=name))
41+
42+
except ValueError as e:
43+
print("Error while parsing LLM output:", e)
44+
return None
45+
46+
return linkedin_username

building-bonds/app.py

+76
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,76 @@
1+
import streamlit as st
2+
3+
from langchain.prompts import PromptTemplate
4+
from langchain.chains import LLMChain
5+
from third_parties.linkedin import scrape_linkedin_profile
6+
from agents.linkedin_lookup_agent import lookup as linedin_lookup_agent
7+
from langchain.llms.bedrock import Bedrock
8+
9+
10+
def get_llm():
11+
bedrock_llm = Bedrock(model_id="anthropic.claude-v2",
12+
model_kwargs={"temperature": 0.1, "max_tokens_to_sample": 4096})
13+
return bedrock_llm
14+
15+
16+
def ice_break_with(name: str):
17+
linkedin_profile_url = linedin_lookup_agent(name=name)
18+
linkedin_data = scrape_linkedin_profile(linkedin_profile_url=linkedin_profile_url)
19+
20+
summary_template = """
21+
Given the LinkedIN information {information} about a person from, I wish to create the following:
22+
1. A short Summary
23+
2. Two interesting facts about them
24+
"""
25+
26+
summary_prompt_template = PromptTemplate(
27+
input_variables=["information"],
28+
template=summary_template,
29+
)
30+
31+
llm = get_llm()
32+
chain = LLMChain(llm=llm, prompt=summary_prompt_template)
33+
34+
result = chain.run(information=linkedin_data)
35+
return result
36+
37+
38+
def main():
39+
40+
st.title('Building Bonds: The Power of Ice-Breakers 💼✨')
41+
st.write('An app that uses Amazon Bedrock and LangChain to create summaries based on their social media profile. 🚀')
42+
43+
st.sidebar.header("🔎 Enter the person's details")
44+
name = st.sidebar.text_input("Name (e.g., 'Andy Jassy Amazon'):")
45+
46+
if st.sidebar.button('Get Summary'):
47+
with st.spinner('Fetching LinkedIn data and creating summary... 🔄'):
48+
result = ice_break_with(name)
49+
st.subheader(f'Summary and couple of interesting facts 📝')
50+
st.write(result)
51+
st.success('Summary generated successfully! 👍')
52+
53+
st.markdown(
54+
"<h3 style='text-align: center; font-size: 20px;'> To know more about Amazon Bedrock, visit <a href='https://aws.amazon.com/bedrock/' target='_blank'>here</a> </h3>",
55+
unsafe_allow_html=True
56+
)
57+
# Styling the Streamlit page
58+
st.markdown("""
59+
<style>
60+
body {
61+
color: #4f4f4f;
62+
background-color: #F5F5F5;
63+
}
64+
.stButton>button {
65+
color: #4f4f4f;
66+
background-color: #FFD700;
67+
border-radius: 30px;
68+
padding: 10px 20px;
69+
font-size: 1.2em;
70+
}
71+
</style>
72+
""", unsafe_allow_html=True)
73+
74+
75+
if __name__ == "__main__":
76+
main()

building-bonds/boundbuilding.gif

3.04 MB
Loading

building-bonds/requirements.txt

+11
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
streamlit==1.24.0
2+
tiktoken==0.5.1
3+
unstructured==0.10.16
4+
langchain==0.0.309
5+
PyPDF2==3.0.1
6+
python-dotenv==1.0.0
7+
psycopg2-binary==2.9.6
8+
altair==4.0.0
9+
urllib3==1.26.6
10+
boto3==1.28.61
11+
google-search-results==2.4.2

building-bonds/third_parties/__init__.py

Whitespace-only changes.
Binary file not shown.
Binary file not shown.
+39
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,39 @@
1+
import os
2+
import requests
3+
4+
5+
def scrape_linkedin_profile(linkedin_profile_url):
6+
"""scrape information from LinkedIn profiles,
7+
Manually scrape the information from the LinkedIn profile"""
8+
api_endpoint = "https://nubela.co/proxycurl/api/v2/linkedin"
9+
header_dic = {"Authorization": f'Bearer {os.environ.get("PROXYCURL_API_KEY")}'}
10+
11+
# For production
12+
response = requests.get(
13+
api_endpoint, params={"url": linkedin_profile_url}, headers=header_dic
14+
)
15+
16+
# # For test and development
17+
# response = requests.get(
18+
# "https://gist.githubusercontent.com/debnsuma/07afaf3939dcc2b5cc404de58016fdd2/raw/9e4b8f942364f6ee9759d1cdb1b6d7b8078ceb4e/suman.json"
19+
# )
20+
21+
data = response.json()
22+
data = {
23+
k: v
24+
for k, v in data.items()
25+
if v not in ([], "", "", None)
26+
and k
27+
not in [
28+
"people_also_viewed",
29+
"certifications",
30+
"accomplishment_publications",
31+
"accomplishment_honors_awards",
32+
"accomplishment_projects",
33+
]
34+
}
35+
if data.get("groups"):
36+
for group_dict in data.get("groups"):
37+
group_dict.pop("profile_pic_url")
38+
39+
return data

0 commit comments

Comments
 (0)