-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnbclassifier.cpp
137 lines (125 loc) · 3.22 KB
/
nbclassifier.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#include "nbclassifier.h"
#include <set>
#include <string>
#include <math.h>
using namespace std;
NaiveBayesClassifier::NaiveBayesClassifier() //kataskeyastis nbc
{
this->pspm=0.0;
this->probs=NULL;
this->pham=0.0;
}
void NaiveBayesClassifier::train(const InstancePool& trainingPool) //methodos train tou nbc
{
unsigned spmc=0;
unsigned hamc=0;
unsigned numofkeys;
unsigned counter = 0;
set<unsigned>::const_iterator it;
for(unsigned i=0; i<trainingPool.getNumberOfInstances(); i++) //metrisi pli8os spam/ham
{
if(trainingPool[i].getCategory())
{
spmc++;
}
else
{
hamc++;
}
for(unsigned j=0; j<trainingPool[i].getNumberOfFeatures(); j++) //eisagogi olwn twn monadikwn id se ena set
{
{
this->keyset.insert(trainingPool[i].getFeatureID(j));
}
}
}
numofkeys = this->keyset.size();
unsigned Mspm[numofkeys]; //pinakas me ton ari8mo emfanisewn se spam minimata gia ka8e keyword
unsigned Mham[numofkeys]; //antostixa gia ham
for (unsigned i=0; i<numofkeys; i++)
{
Mspm[i]=0;
Mham[i]=0;
}
for (it=this->keyset.begin(); it!=this->keyset.end(); it++) //gemizoume tous pinakes Mham/Mspam
{
for(unsigned i=0; i<trainingPool.getNumberOfInstances(); i++)
{
for(unsigned j=0; j<trainingPool[i].getNumberOfFeatures(); j++)
{
if (*it==trainingPool[i].getFeatureID(j))
{
if(trainingPool[i].getCategory())
{
Mspm[counter]++;
}
else
{
Mham[counter]++;
}
}
}
}
counter++;
}
this->pspm = ((float)spmc / trainingPool.getNumberOfInstances()); //P(spam)
this->pham = 1 - this->pspm; //P(ham)
this->probs = new cop[numofkeys];
for (unsigned i=0; i<numofkeys; i++)
{
this->probs[i].copspm = ((float)(1 + Mspm[i]) / (2 + spmc)); //euresh P(i | spam) gia ka8e keyword i
this->probs[i].copham = ((float)(1 + Mham[i]) / (2 + hamc)); //to idio gia ham
}
}
bool NaiveBayesClassifier::classify(const Instance& inst) const //methodos taksinomisis enos agnwstou instance
{
if (keyset.empty()) //elegxos gia to an exei kli8ei i train
{
return false;
}
unsigned counter=0;
float spamsum=0.0;
float hamsum=0.0;
unsigned instfeats = inst.getNumberOfFeatures();
unsigned numofkeys=this->keyset.size();
unsigned flagger[numofkeys]; //pinakas me ta xi apo to P(ti | spam)^xi
for (unsigned i=0; i<numofkeys; i++)
{
flagger[i]=0;
}
set<unsigned>::const_iterator it;
for (it=this->keyset.begin(); it!=this->keyset.end(); it++) //ypologismos tou xi gia kathe i
{
for (unsigned i=0; i<instfeats; i++)
{
if (*it==inst.getFeatureID(i))
{
flagger[counter]=1;
}
}
counter++;
}
for (unsigned i=0; i<numofkeys; i++) //ypologismos tou a8roismatos tis polymetavlitis bernoulli gia spam/ham
{
float a1 = pow(probs[i].copspm,flagger[i]);
float a2 = pow(1-probs[i].copspm,(1-flagger[i]));
float a3 = pow(probs[i].copham,flagger[i]);
float a4 = pow(1-probs[i].copham,(1-flagger[i]));
spamsum = spamsum + log(a1) + log(a2);
hamsum = hamsum + log(a3) + log(a4);
}
float c = log(pspm);
float d = log(pham);
if ((c + spamsum) > (d + hamsum))
{
return true;
}
else
{
return false;
}
}
NaiveBayesClassifier::~NaiveBayesClassifier() //katastrofeas
{
delete[] this->probs; //diagrafei to struct
}