-
Notifications
You must be signed in to change notification settings - Fork 0
/
perceptual_model.py
35 lines (33 loc) · 1.24 KB
/
perceptual_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import torch.nn as nn
import torchvision
from torchvision import models
class VGG16_perceptual(torch.nn.Module):
def __init__(self, requires_grad=False):
super(VGG16_perceptual, self).__init__()
vgg_pretrained_features = models.vgg16(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 4):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 14):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(14, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_1 = h
h = self.slice2(h)
h_relu1_2 = h
h = self.slice3(h)
h_relu3_2 = h
h = self.slice4(h)
h_relu4_2 = h
return h_relu1_1, h_relu1_2, h_relu3_2, h_relu4_2