-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor.cpp
97 lines (84 loc) · 2.47 KB
/
tensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include "test_utils.hpp"
#include "struct/tensor.hpp"
#include "lib/anynum.hpp"
template <typename T>
using mat = vector<vector<T>>;
template <typename T>
auto multiply_tensors(const tensor<T, 2>& a, const tensor<T, 2>& b) {
auto [N, M] = a.size();
auto [Z, K] = b.size();
assert(M == Z);
tensor<T, 2> c({N, K}, 0);
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
for (int k = 0; k < K; k++) {
c[{i, k}] += a[{i, j}] * b[{j, k}];
}
}
}
return c;
}
template <typename T>
auto multiply_mats(const mat<T>& a, const mat<T>& b) {
int N = a.size(), M = a[0].size(), K = b[0].size();
mat<T> c(N, vector<T>(K));
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
for (int k = 0; k < K; k++) {
c[i][k] += a[i][j] * b[j][k];
}
}
}
return c;
}
template <typename T>
auto generate_mat(int N, int M, int v = 30) {
mat<T> arr(N, vector<T>(M));
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
arr[i][j] = uniform_gen<int>(-v, v);
}
}
return arr;
}
template <typename T>
auto convert_to_tensor(const vector<vector<T>>& arr) {
int N = arr.size(), M = arr[0].size();
tensor<T, 2> t({N, M});
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
t[{i, j}] = arr[i][j];
}
}
return t;
}
void speed_test_tensor_multiply() {
START_ACC2(mat, tensor);
LOOP_FOR_DURATION_OR_RUNS_TRACKED (5s, now, 100'000, runs) {
print_time(now, 5s, "stress test tensor x vvi");
int N = rand_unif<int>(100, 200);
int M = rand_unif<int>(100, 200);
int K = rand_unif<int>(100, 200);
mat<unsigned> amat = generate_mat<unsigned>(N, M, 1000000);
mat<unsigned> bmat = generate_mat<unsigned>(M, K, 1000000);
tensor<unsigned, 2> aten = convert_to_tensor(amat);
tensor<unsigned, 2> bten = convert_to_tensor(bmat);
START(mat);
auto cmat = multiply_mats(amat, bmat);
ADD_TIME(mat);
START(tensor);
auto cten = multiply_tensors(aten, bten);
ADD_TIME(tensor);
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
assert(cmat[i][j] == (cten[{i, j}]));
}
}
}
PRINT_EACH(mat, runs);
PRINT_EACH(tensor, runs);
}
int main() {
RUN_BLOCK(speed_test_tensor_multiply());
return 0;
}