-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmicali_vazirani.hpp
583 lines (512 loc) · 17.4 KB
/
micali_vazirani.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Maximum general matching in O(E√V) with good constant. ~1.2s for V=500K and E=2M.
// Usage:
// micali_vazirani mv(V); or mv(V, G)
// ... add edges ...
// int mm = mv.max_matching();
// auto edges = mv.extract_edge_mates();
struct micali_vazirani {
int V, E = 0;
vector<int> mate;
vector<array<int, 2>> edge;
explicit micali_vazirani(int V, const vector<array<int, 2>>& g = {})
: V(V), E(g.size()), edge(g) {}
int add(int u, int v) {
assert(0 <= u && u < V && 0 <= v && v < V && u != v);
return edge.push_back({u, v}), E++;
}
int add_node() { return V++; }
inline int other(int e, int u) const { return u ^ edge[e][0] ^ edge[e][1]; }
inline int len(int u) const { return off[u + 1] - off[u]; }
int max_matching() {
build();
count_matched = bootstrap();
int more = 1;
pred.resize(2 * E);
succ.resize(2 * E);
node.resize(V);
phaselist.assign(V, V);
bridges.assign(V, E);
while (more && count_matched < V / 2) {
reset_search();
more = search();
}
return count_matched;
}
auto extract_mates() const {
vector<array<int, 2>> pairs;
for (int i = 0; i < V; i++) {
if (i < mate[i]) {
pairs.push_back({i, mate[i]});
}
}
return pairs;
}
auto extract_edge_mates() const {
vector<int> mated;
for (int e = 0; e < E; e++) {
auto [u, v] = edge[e];
if (mate[u] == v) {
mated.push_back(e);
}
}
return mated;
}
private:
// For implementation details see Analysis.md
vector<int> adj, off;
void build() {
off.assign(V + 1, 0), mate.assign(V, -1);
for (auto [u, v] : edge) {
off[u + 1]++, off[v + 1]++;
}
partial_sum(begin(off), end(off), begin(off));
vector<int> cur = off;
adj.resize(2 * E);
int e = 0;
for (auto [u, v] : edge) {
adj[cur[u]++] = adj[cur[v]++] = e++;
}
}
int bootstrap() {
linked_lists buck(V + 1, V);
vector<int> cnt(V, 0);
for (int u = 0; u < V; u++) {
if (mate[u] == -1 && len(u)) {
cnt[u] = len(u);
buck.push_back(cnt[u], u);
}
}
int count = 0, s = 1;
while (s < V) {
if (buck.empty(s)) {
s++;
continue;
}
int u = buck.head(s);
buck.erase(u);
assert(mate[u] == -1);
for (int i = off[u]; i < off[u + 1]; i++) {
int e = adj[i], v = other(e, u);
if (mate[v] == -1) {
mate[u] = v, mate[v] = u;
buck.erase(v), count++;
break;
}
}
if (mate[u] == -1) {
continue;
}
for (int w : {u, mate[u]}) {
for (int i = off[w]; i < off[w + 1]; i++) {
int e = adj[i], t = other(e, w);
if (mate[t] == -1) {
cnt[t]--;
buck.erase(t);
if (cnt[t] > 0) {
buck.push_back(cnt[t], t);
s = min(s, cnt[t]);
}
}
}
}
}
return count;
}
static inline constexpr int inf = INT_MAX / 2;
struct linked_lists {
int L, N;
vector<int> next, prev;
// L: lists are [0...L), N: integers are [0...N)
explicit linked_lists(int L = 0, int N = 0) { assign(L, N); }
int rep(int l) const { return l + N; }
int head(int l) const { return next[rep(l)]; }
int tail(int l) const { return prev[rep(l)]; }
bool empty(int l) const { return next[rep(l)] == rep(l); }
void push_front(int l, int n) { meet(rep(l), n, head(l)); }
void push_back(int l, int n) { meet(tail(l), n, rep(l)); }
void erase(int n) { meet(prev[n], next[n]); }
void clear() {
iota(begin(next) + N, end(next), N);
iota(begin(prev) + N, end(prev), N);
}
void assign(int L, int N) {
this->L = L, this->N = N;
next.resize(N + L), prev.resize(N + L), clear();
}
private:
inline void meet(int u, int v) { next[u] = v, prev[v] = u; }
inline void meet(int u, int v, int w) { meet(u, v), meet(v, w); }
};
struct forward_lists {
int L, N;
vector<int> next;
// L: lists are [0...L), N: integers are [0...N)
explicit forward_lists(int L = 0, int N = 0) { assign(L, N); }
int rep(int l) const { return l + N; }
int head(int l) const { return next[rep(l)]; }
bool empty(int l) const { return head(l) == -1; }
void push(int l, int n) { insert(rep(l), n); }
void insert(int i, int n) { next[n] = next[i], next[i] = n; }
void pop(int l) { assert(head(l) != -1), next[rep(l)] = next[head(l)]; }
void clear() { fill(begin(next) + N, end(next), -1); }
void assign(int L, int N) { this->L = L, this->N = N, next.assign(L + N, -1); }
};
struct link_t {
int hi = -1, lo = -1;
};
struct node_t {
int minlevel = inf, maxlevel = inf, level[2] = {inf, inf};
int vis = -1, bloom = -1, petal = -1;
link_t trail[2] = {};
int arc[2] = {}, preds = 0, succs = 0;
bool color = 0, erased = 0;
};
struct bloom_t {
int peak, base, star;
};
vector<int> pred, succ;
vector<node_t> node;
vector<bloom_t> bloom;
linked_lists phaselist, bridges;
vector<bool> seen;
int count_matched, phase, blooms, pending, ddfsid, barrier, exposed[2];
inline void add_phase(int lvl, int u) { phaselist.push_back(lvl, u), pending++; }
inline void add_bridge(int lvl, int e) { bridges.push_back(lvl, e); }
// find base*(u) in constant time with union-find
inline int findstar(int u) {
int b = node[u].bloom;
if (b != -1) {
if (node[bloom[b].star].bloom != -1)
bloom[b].star = findstar(bloom[b].star);
return bloom[b].star;
}
return u;
}
void reset_search() {
phase = blooms = ddfsid = pending = 0;
phaselist.clear(), bridges.clear();
for (int u = 0; u < V; u++) {
node[u] = node_t();
if (mate[u] == -1) {
add_phase(0, u);
node[u].minlevel = node[u].level[0] = 0;
}
}
seen.assign(E, false);
bloom.clear();
}
int search() {
constexpr int max_phases = 10;
bool done = false;
int more, augmentations = 0, good = 0;
while (!done && good < max_phases && count_matched < V / 2) {
done = MIN();
more = MAX();
good += more > 0;
count_matched += more;
augmentations += more;
phase++;
}
return augmentations;
}
void visit_prop(int e, int u, int v, bool parity) {
assert(!seen[e] && !node[u].erased && !node[v].erased);
if (node[v].minlevel == inf) {
node[v].minlevel = node[v].level[!parity] = phase + 1;
add_phase(phase + 1, v);
}
assert(node[v].minlevel == phase + 1 && node[v].level[!parity] == phase + 1);
pred[off[v] + node[v].preds++] = u;
succ[off[u] + node[u].succs++] = v;
seen[e] = true;
}
void visit_bridge(int e, bool parity) {
auto [u, v] = edge[e];
assert(!seen[e] && !node[u].erased && !node[v].erased);
assert(node[u].level[parity] < inf && node[v].level[parity] < inf);
int tenacity = node[u].level[parity] + node[v].level[parity] + 1;
int lvl = tenacity >> 1;
assert(phase <= lvl && lvl < V);
add_bridge(lvl, e);
seen[e] = true;
}
void bfs_visit(int e, int u, int v) {
bool parity = phase % 2;
if (node[v].minlevel > phase) {
visit_prop(e, u, v, parity);
} else if (node[v].level[parity] < inf) {
visit_bridge(e, parity);
}
}
bool MIN() {
if (pending == 0)
return true;
bool parity = phase % 2;
for (int u = phaselist.head(phase); u != phaselist.rep(phase);
u = phaselist.next[u]) {
pending--;
if (node[u].erased)
continue;
if (parity == 0) {
for (int i = off[u]; i < off[u + 1]; i++) {
int e = adj[i], v = other(e, u);
if (mate[u] != v && !seen[e] && !node[v].erased)
bfs_visit(e, u, v);
}
} else if (!node[mate[u]].erased) {
for (int i = off[u]; i < off[u + 1]; i++) {
int e = adj[i], v = other(e, u);
if (mate[u] == v && !seen[e])
bfs_visit(e, u, v);
if (mate[u] == v)
break;
}
}
}
return false;
}
void push_dfs(int& h, bool c, int v, int w) {
assert(node[h].vis != ddfsid || (node[h].color == c && node[h].arc[c] > 1));
node[h].vis = ddfsid;
node[h].color = c;
node[w].arc[c] = 0;
node[w].trail[c].hi = h;
node[w].trail[c].lo = v;
h = w;
}
bool pop_dfs(int& h, bool c) {
h = node[h].trail[c].hi;
int i = node[h].arc[c], s = node[h].preds;
return i < s;
}
void advance_dfs(int& h, bool c) {
int& i = node[h].arc[c];
int v = pred[off[h] + i++], w = findstar(v);
lazy_erase_predecessors(h, i);
push_dfs(h, c, v, w);
}
bool reverse_dfs(int& h, bool c, int b) {
bool ok = false;
while (!ok && h != b) {
ok = pop_dfs(h, c);
}
return ok;
}
bool backtrack_dfs(int& h, bool c, int b) {
int x = h, lvl = node[x].minlevel;
while ((h == x || node[h].minlevel > lvl) && reverse_dfs(h, c, b)) {
do {
advance_dfs(h, c);
} while (node[h].vis != ddfsid && node[h].minlevel > lvl);
}
return h != b;
}
int ddfs(int peak) {
int r = findstar(edge[peak][0]), b = findstar(edge[peak][1]);
if (r == b)
return -1;
int red_barrier = r;
++ddfsid, barrier = b;
node[r].arc[0] = node[b].arc[1] = 0;
node[r].trail[0] = node[b].trail[1] = {};
while (node[r].minlevel != 0 || node[b].minlevel != 0) {
if (node[r].minlevel >= node[b].minlevel) {
advance_dfs(r, 0);
} else {
advance_dfs(b, 1);
}
if (r == b) {
if (!backtrack_dfs(b, 1, barrier)) {
b = barrier = r;
if (!backtrack_dfs(r, 0, red_barrier)) {
r = barrier = b;
return 0;
}
}
}
}
assert(r != b);
exposed[0] = r, exposed[1] = b;
return 1;
}
int MAX() {
int augmentations = 0;
for (int peak = bridges.head(phase); peak != bridges.rep(phase);
peak = bridges.next[peak]) {
auto [red, blue] = edge[peak];
if (node[red].erased || node[blue].erased)
continue;
auto what = ddfs(peak);
if (what == 1) {
augment_path(peak);
augmentations++;
} else if (what == 0) {
form_bloom(peak);
blooms++;
}
}
return augmentations;
}
void bloom_build_petals() {
for (bool c : {0, 1}) {
int u = barrier, v = node[u].trail[c].hi;
while (v != -1) {
node[v].petal = node[u].trail[c].lo;
u = v, v = node[u].trail[c].hi;
}
}
}
void bloom_dfs_level(int u) {
if (u == barrier)
return;
int lvl = 2 * phase + 1 - node[u].minlevel;
assert(!node[u].erased && node[u].bloom == -1 && node[u].vis == ddfsid);
assert(lvl < V && node[u].maxlevel == inf && node[u].level[lvl % 2] == inf);
node[u].bloom = blooms;
node[u].maxlevel = node[u].level[lvl % 2] = lvl;
add_phase(lvl, u);
for (int i = 0; i < node[u].preds; i++) {
int v = pred[off[u] + i], w = findstar(v);
if (node[w].bloom == -1 && node[u].color == node[w].color)
bloom_dfs_level(w);
}
if (lvl % 2 == 0) {
for (int i = off[u]; i < off[u + 1]; i++) {
int e = adj[i], v = other(e, u);
if (!node[v].erased && !seen[e] && node[v].level[0] < inf)
visit_bridge(e, 0);
}
}
}
void form_bloom(int peak) {
assert(node[barrier].bloom == -1);
bloom.push_back({peak, barrier, barrier});
bloom_build_petals();
bloom_dfs_level(findstar(edge[peak][0]));
bloom_dfs_level(findstar(edge[peak][1]));
}
using path_t = list<int>;
inline void add_path(path_t& path, bool back, path_t&& subpath) {
path.splice(back ? end(path) : begin(path), subpath);
}
inline void add_path(path_t& path, bool back, int node) {
back ? path.push_back(node) : path.push_front(node);
}
path_t walk_bloom(int u, bool down) {
int B = node[u].bloom;
if (node[u].minlevel % 2 == 0) /* outer */ {
return walk_down(u, B, down);
} else /* inner */ {
int t = edge[bloom[B].peak][!node[u].color];
auto path = walk_peak(u, B, !down);
add_path(path, down, walk_base(t, B, down));
return path;
}
}
path_t walk_star(int u, int star, bool down) {
path_t path;
while (u != star) {
add_path(path, down, walk_bloom(u, down));
u = bloom[node[u].bloom].base;
}
return path;
}
path_t walk_peak(int u, int B, bool down) {
bool c = node[u].color;
int t = edge[bloom[B].peak][c];
path_t path{u}, top_path;
while (node[t].bloom != B) {
add_path(top_path, down, walk_bloom(t, down));
t = bloom[node[t].bloom].base;
}
while (u != t) {
int v = node[u].trail[c].lo;
add_path(path, !down, walk_star(v, u, down));
u = node[u].trail[c].hi;
add_path(path, !down, u);
}
add_path(path, !down, move(top_path));
return path;
}
path_t walk_base(int u, int B, bool down) {
int base = bloom[B].base;
path_t path;
while (u != base) {
if (node[u].bloom == B) {
add_path(path, down, u);
u = node[u].petal; // take a predecessor of the same color
} else {
add_path(path, down, walk_bloom(u, down));
u = bloom[node[u].bloom].base;
}
}
return path;
}
path_t walk_down(int u, int B, bool down) {
int base = bloom[B].base;
path_t path;
while (u != base) {
if (node[u].bloom == B) {
add_path(path, down, u);
u = pred[off[u]]; // any predecessor works to go down
} else {
add_path(path, down, walk_bloom(u, down));
u = bloom[node[u].bloom].base;
}
}
return path;
}
path_t find_path(int top, int c, bool down) {
int u = exposed[c], w = findstar(top);
path_t path;
while (u != w) {
int v = node[u].trail[c].lo;
add_path(path, !down, u);
add_path(path, !down, walk_star(v, u, down));
u = node[u].trail[c].hi;
}
add_path(path, !down, w);
add_path(path, !down, walk_star(top, w, down));
return path;
}
void augment_path(int peak) {
auto path = find_path(edge[peak][0], 0, false);
auto rest = find_path(edge[peak][1], 1, true);
path.splice(end(path), rest);
assert(path.size() == 2u * phase + 2);
auto ait = begin(path), bit = next(ait);
while (bit != end(path)) {
int u = *ait++, v = *bit++;
assert(!node[u].erased && !node[v].erased);
if (mate[v] != u)
mate[u] = v, mate[v] = u;
}
for (int u : path) {
node[u].erased = true;
}
erase_successors(path);
}
void erase_successors(path_t& path) {
while (!path.empty()) {
int u = path.front();
path.pop_front();
for (int i = 0; i < node[u].succs; i++) {
int v = succ[off[u] + i];
if (!node[v].erased && lazy_erase_predecessors(v)) {
node[v].erased = true;
path.push_back(v);
}
}
}
}
inline bool lazy_erase_predecessors(int v, int i = 0) {
int& s = node[v].preds;
while (i < s && node[pred[off[v] + i]].erased) {
swap(pred[off[v] + i], pred[off[v] + s - 1]), s--;
}
return i == s; // erased all after i?
}
};