-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathquickstart.py
284 lines (244 loc) · 10.7 KB
/
quickstart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import json
import openai
import os
import time
import logging
import base64
import requests
from datetime import datetime
from tenacity import retry, wait_exponential, stop_after_attempt
from datasets import load_dataset
# Initialize global variables
logger = logging.getLogger('benchmark')
model_name = 'chatgpt-4o-latest' # default value
temperature = 0.2 # default value
log_filename = None
def setup_logging(filename):
"""Setup logging configuration"""
global logger
logger.setLevel(logging.INFO)
# Remove any existing handlers
logger.handlers = []
# Create file handler
handler = logging.FileHandler(filename)
handler.setFormatter(logging.Formatter('%(message)s'))
logger.addHandler(handler)
return logger
def encode_image(image_path):
"""Encode local image to base64 string"""
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except Exception as e:
print(f"Error encoding image {image_path}: {str(e)}")
return None
def encode_image_url(image_url):
"""Encode image from URL to base64 string"""
try:
response = requests.get(image_url)
response.raise_for_status()
return base64.b64encode(response.content).decode('utf-8')
except Exception as e:
print(f"Error encoding image from URL {image_url}: {str(e)}")
return None
@retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3))
def create_multimodal_request(example, client, use_urls=False, shutdown_event=None):
"""
Create a multimodal request from a dataset example
Args:
example: Dataset example to process
client: OpenAI client
use_urls: Boolean flag to use image URLs instead of local files
shutdown_event: Optional threading.Event for graceful shutdown
"""
prompt = f"""Given the following medical case:
Please answer this multiple choice question:
{example['question']}
Base your answer only on the provided images and case information."""
content = [{"type": "text", "text": prompt}]
if use_urls:
# Handle image URLs from the dataset
image_urls = example['image_source_urls']
if isinstance(image_urls, str):
image_urls = [image_urls]
elif isinstance(image_urls[0], list): # Handle nested lists
image_urls = [url for sublist in image_urls for url in sublist]
for img_url in image_urls:
if img_url and isinstance(img_url, str):
base64_image = encode_image_url(img_url)
if base64_image:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
print(f"Successfully loaded image from URL: {img_url}")
else:
# Handle local image files
image_paths = example['images']
if isinstance(image_paths, str):
image_paths = [image_paths]
elif isinstance(image_paths[0], list): # Handle nested lists
image_paths = [path for sublist in image_paths for path in sublist]
for img_path in image_paths:
if img_path and isinstance(img_path, str):
img_path = img_path.replace('figures/', '')
full_path = os.path.join("figures", img_path)
if os.path.exists(full_path):
base64_image = encode_image(full_path)
if base64_image:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
print(f"Successfully loaded image: {full_path}")
else:
print(f"Image file not found: {full_path}")
# If no images found, log and return None
if len(content) == 1: # Only the text prompt exists
print(f"No images found for question {example.get('question_id', 'unknown')}")
log_entry = {
"question_id": example.get('question_id', 'unknown'),
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"status": "skipped",
"reason": "no_images",
"input": {
"question": example['question'],
"explanation": example.get('explanation', ''),
"image_paths": example.get('images' if not use_urls else 'image_source_urls')
}
}
logger.info(json.dumps(log_entry))
return None
messages = [
{"role": "system", "content": "You are a medical imaging expert. Provide only the letter corresponding to your answer choice (A/B/C/D/E/F)."},
{"role": "user", "content": content}
]
try:
start_time = time.time()
response = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=50,
temperature=temperature
)
duration = time.time() - start_time
log_entry = {
"question_id": example.get('question_id', 'unknown'),
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"duration": round(duration, 2),
"usage": {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens
},
"model_answer": response.choices[0].message.content,
"correct_answer": example['answer'],
"input": {
"messages": messages,
"question": example['question'],
"explanation": example.get('explanation', ''),
"image_source": "url" if use_urls else "local",
"images": example.get('image_source_urls' if use_urls else 'images')
}
}
logger.info(json.dumps(log_entry))
return response
except Exception as e:
log_entry = {
"question_id": example.get('question_id', 'unknown'),
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"status": "error",
"error": str(e),
"input": {
"messages": messages,
"question": example['question'],
"explanation": example.get('explanation', ''),
"image_source": "url" if use_urls else "local",
"images": example.get('image_source_urls' if use_urls else 'images')
}
}
logger.info(json.dumps(log_entry))
print(f"Error processing question {example.get('question_id', 'unknown')}: {str(e)}")
raise
def main():
import signal
import threading
import argparse
# Add command line argument parsing
parser = argparse.ArgumentParser(description='Run medical image analysis benchmark')
parser.add_argument('--use-urls', action='store_true', help='Use image URLs instead of local files')
parser.add_argument('--model', type=str, default='chatgpt-4o-latest', help='Model name to use')
parser.add_argument('--temperature', type=float, default=0.2, help='Temperature for model inference')
parser.add_argument('--log-prefix', type=str, help='Prefix for log filename (default: model name)')
parser.add_argument('--max-cases', type=int, default=None, help='Maximum number of cases to process (default: all)')
args = parser.parse_args()
# Set global variables
global model_name, temperature, log_filename
model_name = args.model
temperature = args.temperature
log_prefix = args.log_prefix if args.log_prefix is not None else args.model
log_filename = f"{log_prefix}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
# Setup logging
setup_logging(log_filename)
# Create an event for handling graceful shutdown
shutdown_event = threading.Event()
def signal_handler(signum, frame):
print("\nShutdown signal received. Completing current task...")
shutdown_event.set()
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Load the dataset from Hugging Face
dataset = load_dataset("json", data_files="chestagentbench/metadata.jsonl")
train_dataset = dataset["train"]
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
client = openai.OpenAI(api_key=api_key)
total_examples = len(train_dataset)
processed = 0
skipped = 0
print(f"Beginning benchmark evaluation for model {model_name}")
print(f"Using {'image URLs' if args.use_urls else 'local files'} for images")
print(f"Temperature: {temperature}")
# Handle max cases limit
dataset_to_process = train_dataset
if args.max_cases is not None:
dataset_to_process = train_dataset.select(range(min(args.max_cases, len(train_dataset))))
total_examples = len(dataset_to_process)
print(f"Processing {total_examples} cases (limited by --max-cases argument)")
for example in dataset_to_process:
if shutdown_event.is_set():
print("\nGraceful shutdown initiated. Saving progress...")
break
processed += 1
response = create_multimodal_request(example, client, args.use_urls, shutdown_event)
if response is None:
skipped += 1
print(f"Skipped question: {example.get('question_id', 'unknown')}")
continue
print(f"Progress: {processed}/{total_examples}")
print(f"Question ID: {example.get('question_id', 'unknown')}")
print(f"Model Answer: {response.choices[0].message.content}")
print(f"Correct Answer: {example['answer']}\n")
print(f"\nBenchmark Summary:")
print(f"Total Examples Processed: {processed}")
print(f"Total Examples Skipped: {skipped}")
# Verify log file exists and has content
if os.path.exists(log_filename) and os.path.getsize(log_filename) > 0:
print(f"\nLog file saved to: {os.path.abspath(log_filename)}")
else:
print(f"\nWarning: Log file could not be verified at: {os.path.abspath(log_filename)}")
print("Please check directory permissions and available disk space.")
if __name__ == "__main__":
main()