|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Parser comparison\n", |
| 8 | + "\n", |
| 9 | + "This notebook lets you visualize side-by-side how each parser analyzes a document, and compare the resulting tables.\n" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "# Setup pypdf_table_extraction" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "import os\n", |
| 26 | + "os.getcwd()\n", |
| 27 | + "# Install from source\n", |
| 28 | + "!git clone -b main https://github.com/py-pdf/pypdf_table_extraction.git src\n", |
| 29 | + "%cd src\n", |
| 30 | + "\n", |
| 31 | + "\n", |
| 32 | + "!pip install -e .\n", |
| 33 | + "\n", |
| 34 | + "# Optionally you can Install ghostscript as the imageconversion backend.\n", |
| 35 | + "# uncomment the following lines\n", |
| 36 | + "# !apt-get install -y ghostscript\n", |
| 37 | + "# !pip install ghostscript" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "metadata": { |
| 44 | + "tags": [] |
| 45 | + }, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "# Bootstrap and common imports\n", |
| 49 | + "import sys, time\n", |
| 50 | + "sys.path.insert(0, os.path.abspath('')) # Prefer the local version of pypdf_table_extraction if available\n", |
| 51 | + "import pypdf_table_extraction\n", |
| 52 | + "\n", |
| 53 | + "print(f\"Using pypdf_table_extraction v{pypdf_table_extraction.__version__} from file {pypdf_table_extraction.__file__}.\")" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "markdown", |
| 58 | + "metadata": {}, |
| 59 | + "source": [ |
| 60 | + "## Select a PDF file to review\n", |
| 61 | + "\n", |
| 62 | + "You can modify the section below to point to a pdf or your choice to visualize the results. By default, it points to one of the test .pdfs included with pypdf_table_extraction.\n", |
| 63 | + "This is seeded with the unit test files for convenience." |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "kwargs = {}\n", |
| 73 | + "data = None\n", |
| 74 | + "# pdf_file = \"vertical_header.pdf\" # test_network_vertical_header\n", |
| 75 | + "# pdf_file, kwargs = \"vertical_header.pdf\", {\"pages\": \"all\"} # test_network_vertical_headerpages\n", |
| 76 | + "# pdf_file, kwargs = \"background_lines_1.pdf\", {\"process_background\": True} # {\"process_background\": True} # test_lattice_process_background\n", |
| 77 | + "\n", |
| 78 | + "# pdf_file, kwargs, data = \"superscript.pdf\", {\"flag_size\": True}, data_stream_flag_size # test_network_flag_size\n", |
| 79 | + "# pdf_file, kwargs = \"superscript.pdf\", {\"flag_size\": True} # , data_stream_flag_size # test_network_flag_size\n", |
| 80 | + "# pdf_file = \"health.pdf\" # test_network\n", |
| 81 | + "# pdf_file = \"clockwise_table_2.pdf\"\n", |
| 82 | + "# pdf_file = \"clockwise_table_1.pdf\"\n", |
| 83 | + "# pdf_file = \"foo.pdf\"\n", |
| 84 | + "# pdf_file, kwargs = \"saturation_threshold.pdf\", {\"process_color_background\": False, \"process_background\": True, \"saturation_threshold\": 5, \"threshold_blocksize\": 25} # \"process_background\": True,\n", |
| 85 | + "\n", |
| 86 | + "# pdf_file = \"birdisland.pdf\"\n", |
| 87 | + "# pdf_file, kwargs = \"diesel_engines.pdf\", {\"pages\": \"4-5\"} # containing multiple pages 2-4 = hybrid error same for 3-4,2-3\n", |
| 88 | + "\n", |
| 89 | + "# pdf_file, kwargs = \"column_span_1.pdf\", {\"copy_text\": \"h\"}\n", |
| 90 | + "# pdf_file = \"tabula/12s0324.pdf\" # interesting because contains two separate tables\n", |
| 91 | + "# pdf_file, kwargs = \"tabula/12s0324.pdf\", {\"strip_text\": \" ,\\n\"} # interesting because contains two separate tables\n", |
| 92 | + "# pdf_file, kwargs = \"tabula/us-007.pdf\", {\"table_regions\": [\"320,335,573,505\"]} # test_network_table_regions\n", |
| 93 | + "# pdf_file, kwargs = \"tabula/us-007.pdf\", {\"table_areas\": [\"320,500,573,335\"]} # test_network_table_areas\n", |
| 94 | + "# pdf_file, kwargs = \"detect_vertical_false.pdf\", {\"strip_text\": \" ,\\n\"} # data_stream_strip_text\n", |
| 95 | + "# pdf_file = \"detect_vertical_false.pdf\" #\n", |
| 96 | + "# pdf_file, kwargs, data = \"tabula/m27.pdf\", {\"columns\": [\"72,95,209,327,442,529,566,606,683\"], \"split_text\": True, }, data_stream_split_text # data_stream_split_text\n", |
| 97 | + "# pdf_file, kwargs= \"tabula/m27.pdf\", {\"columns\": [\"72,95,209,327,442,529,566,606,683\"], \"split_text\": True, } # , data_stream_split_text # data_stream_split_text\n", |
| 98 | + "\n", |
| 99 | + "# pdf_file = \"clockwise_table_2.pdf\" # test_network_table_rotated / test_stream_table_rotated\n", |
| 100 | + "# pdf_file, kwargs = \"clockwise_table_2.pdf\", {\"edge_tol\": 10} # configurable vgap header search not working\n", |
| 101 | + "# edge_tol 0 gives an error\n", |
| 102 | + "pdf_file = \"vertical_header.pdf\"\n", |
| 103 | + "\n", |
| 104 | + "# pdf_file = \"twotables_2.pdf\"\n", |
| 105 | + "# pdf_file = \"camelot-issue-132-multiple-tables.pdf\"\n", |
| 106 | + "# pdf_file = \"multiple_tables.pdf\" # fixes issue 132\n", |
| 107 | + "# pdf_file, kwargs, data = \"edge_tol.pdf\", {\"edge_tol\": 500}, data_stream_edge_tol\n", |
| 108 | + "# pdf_file, kwargs = \"edge_tol.pdf\", {\"edge_tol\": 500} # , data_stream_edge_tol\n", |
| 109 | + "# pdf_file, kwargs, data = \"edge_tol.pdf\", {}, data_stream_edge_tol\n", |
| 110 | + "\n", |
| 111 | + "# pdf_file = \"tabula/arabic.pdf\"\n", |
| 112 | + "# pdf_file = \"tabula/indictb1h_14.pdf\" # interesting mixed type table\n", |
| 113 | + "# pdf_file = \"tabula/m27.pdf\" # one table spanning multiple pages\n", |
| 114 | + "# pdf_file = \"tabula/mednine.pdf\" # one table spanning multiple pages\n", |
| 115 | + "\n", |
| 116 | + "# pdf_file = \"tabula/spreadsheet_no_bounding_frame.pdf\n", |
| 117 | + "# pdf_file, kwargs = \"diesel_engines.pdf\", {\"pages\": \"4-5\"} # containing multiple pages\n", |
| 118 | + "\n", |
| 119 | + "# pdf_file, kwargs = \"tabula/schools.pdf\", {\"pages\": \"all\"} # network parser hangs on contour plot\n", |
| 120 | + "\n", |
| 121 | + "filename = os.path.join(\n", |
| 122 | + " os.path.dirname(os.path.abspath('.')),\n", |
| 123 | + " \"src/tests/files\",\n", |
| 124 | + " pdf_file\n", |
| 125 | + ")\n" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": null, |
| 131 | + "metadata": { |
| 132 | + "tags": [] |
| 133 | + }, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "FLAVORS = [\"stream\", \"lattice\", \"network\", \"hybrid\"]\n", |
| 137 | + "tables_parsed = {}\n", |
| 138 | + "parses = {}\n", |
| 139 | + "max_tables = 0\n", |
| 140 | + "for idx, flavor in enumerate(FLAVORS):\n", |
| 141 | + " timer_before_parse = time.perf_counter()\n", |
| 142 | + " error, tables = None, []\n", |
| 143 | + " try:\n", |
| 144 | + " tables = pypdf_table_extraction.read_pdf(filename, flavor=flavor, debug=True, **kwargs)\n", |
| 145 | + " except ValueError as value_error:\n", |
| 146 | + " error = f\"Invalid argument for parser {flavor}: {value_error}\"\n", |
| 147 | + " print(error)\n", |
| 148 | + " timer_after_parse = time.perf_counter()\n", |
| 149 | + " max_tables = max(max_tables, len(tables))\n", |
| 150 | + "\n", |
| 151 | + " parses[flavor] = {\n", |
| 152 | + " \"tables\": tables,\n", |
| 153 | + " \"time\": timer_after_parse - timer_before_parse,\n", |
| 154 | + " \"error\": error\n", |
| 155 | + " }\n", |
| 156 | + "\n", |
| 157 | + " print(f\"##### {flavor} ####\")\n", |
| 158 | + " print(f\"Found {len(tables)} table(s):\")\n", |
| 159 | + " for idx, table in enumerate(tables):\n", |
| 160 | + " flavors_matching = []\n", |
| 161 | + " for previous_flavor, previous_tables in tables_parsed.items():\n", |
| 162 | + " for prev_idx, previous_table in enumerate(previous_tables):\n", |
| 163 | + " if previous_table.df.equals(table.df):\n", |
| 164 | + " flavors_matching.append(\n", |
| 165 | + " f\"{previous_flavor} table {prev_idx}\")\n", |
| 166 | + " print(f\"## Table {idx} ##\")\n", |
| 167 | + " if flavors_matching:\n", |
| 168 | + " print(f\"Same as {', '.join(flavors_matching)}.\")\n", |
| 169 | + " else:\n", |
| 170 | + " display(table.df)\n", |
| 171 | + " print(\"\")\n", |
| 172 | + " tables_parsed[flavor] = tables\n" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "markdown", |
| 177 | + "metadata": {}, |
| 178 | + "source": [ |
| 179 | + "## Show tables layout within original document" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": null, |
| 185 | + "metadata": { |
| 186 | + "tags": [] |
| 187 | + }, |
| 188 | + "outputs": [], |
| 189 | + "source": [ |
| 190 | + "\n", |
| 191 | + "# Set up plotting options\n", |
| 192 | + "import matplotlib.pyplot as plt\n", |
| 193 | + "%matplotlib inline\n", |
| 194 | + "PLOT_HEIGHT = 12\n", |
| 195 | + "\n", |
| 196 | + "row_count = max(max_tables, 1)\n", |
| 197 | + "plt.rcParams[\"figure.figsize\"] = [PLOT_HEIGHT * len(FLAVORS), PLOT_HEIGHT * row_count]\n", |
| 198 | + "fig, axes = plt.subplots(row_count, len(FLAVORS))\n", |
| 199 | + "plt.subplots_adjust(wspace=0, hspace=0) # Reduce margins to maximize the display zone\n", |
| 200 | + "\n", |
| 201 | + "fig.suptitle('Side-by-side flavor comparison', fontsize=24, fontweight='bold')\n", |
| 202 | + "for idx, flavor in enumerate(FLAVORS):\n", |
| 203 | + " parse = parses[flavor]\n", |
| 204 | + " tables = parse[\"tables\"]\n", |
| 205 | + " top_ax = axes.flat[idx]\n", |
| 206 | + " title = f\"{flavor}\\n\" \\\n", |
| 207 | + " f\"Detected {len(tables)} table(s) in {parse['time']:.2f}s\"\n", |
| 208 | + " if parse['error']:\n", |
| 209 | + " title = title + f\"\\nError parsing: {parse['error']}\"\n", |
| 210 | + " top_ax.set_title(title, fontsize=12, fontweight='bold')\n", |
| 211 | + " for table_idx, table in enumerate(tables):\n", |
| 212 | + " if max_tables > 1:\n", |
| 213 | + " ax = axes[table_idx][idx]\n", |
| 214 | + " else:\n", |
| 215 | + " ax = axes[idx]\n", |
| 216 | + " # Check if the table has data before attempting to plot it\n", |
| 217 | + " if table.shape[0] > 0 and table.shape[1] > 0: # Check if table has rows and columns\n", |
| 218 | + " fig = camelot.plot(table, kind='grid', ax=ax)\n", |
| 219 | + " ax.text(\n", |
| 220 | + " 0.5, -0.1,\n", |
| 221 | + " \"{flavor} table {table_idx} - {rows}x{cols}\".format(\n", |
| 222 | + " flavor=flavor,\n", |
| 223 | + " table_idx=table_idx,\n", |
| 224 | + " rows=table.shape[0],\n", |
| 225 | + " cols=table.shape[1],\n", |
| 226 | + " ),\n", |
| 227 | + " size=14, ha=\"center\",\n", |
| 228 | + " transform=ax.transAxes\n", |
| 229 | + " )\n", |
| 230 | + " else:\n", |
| 231 | + " print(f\"Skipping plotting for empty table {table_idx} in {flavor}\") # Inform user about the skipped table\n", |
| 232 | + " timer_after_plot = time.perf_counter()\n" |
| 233 | + ] |
| 234 | + } |
| 235 | + ], |
| 236 | + "metadata": { |
| 237 | + "file_extension": ".py", |
| 238 | + "kernelspec": { |
| 239 | + "display_name": "Python 3 (ipykernel)", |
| 240 | + "language": "python", |
| 241 | + "name": "python3" |
| 242 | + }, |
| 243 | + "language_info": { |
| 244 | + "codemirror_mode": { |
| 245 | + "name": "ipython", |
| 246 | + "version": 3 |
| 247 | + }, |
| 248 | + "file_extension": ".py", |
| 249 | + "mimetype": "text/x-python", |
| 250 | + "name": "python", |
| 251 | + "nbconvert_exporter": "python", |
| 252 | + "pygments_lexer": "ipython3", |
| 253 | + "version": "3.12.5" |
| 254 | + }, |
| 255 | + "mimetype": "text/x-python", |
| 256 | + "name": "python", |
| 257 | + "npconvert_exporter": "python", |
| 258 | + "pygments_lexer": "ipython3", |
| 259 | + "version": 3 |
| 260 | + }, |
| 261 | + "nbformat": 4, |
| 262 | + "nbformat_minor": 4 |
| 263 | +} |
0 commit comments