forked from hongcui/capstone-project-bulut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleaveOneOut.py
97 lines (85 loc) · 3.19 KB
/
leaveOneOut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from sklearn.model_selection import LeaveOneOut
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.neural_network import MLPClassifier
from xgboost import XGBClassifier
import time
data = pd.read_csv("./data/data.csv")
data.drop(['Reference1', 'Dataset1', 'Reference2', 'Dataset2'], axis=1, inplace=True)
data = data.sample(frac=1).reset_index(drop=True)
y = data.Same.copy().to_numpy()
features = data.drop(['Same'], axis=1).to_numpy()
start = time.time()
loo = LeaveOneOut()
predictions = np.array([])
for train_index, test_index in loo.split(features):
features_train, features_test = features[train_index], features[test_index]
y_train, y_test = y[train_index], y[test_index]
model = LogisticRegression()
model.fit(features_train, y_train)
y_pred = model.predict(features_test)
if predictions.size: # problem here
predictions = np.hstack((predictions,y_pred))
else:
predictions = y_pred
print("first iteration")
end = time.time()
print(end - start)
print("results for logistic regression")
print("Accuracy:", metrics.accuracy_score(y, predictions))
print("Precision:", metrics.precision_score(y, predictions))
print("Recall:", metrics.recall_score(y, predictions))
print("F1:", metrics.f1_score(y, predictions))
start = time.time()
loo = LeaveOneOut()
predictions = np.array([])
ctr = 1
for train_index, test_index in loo.split(features):
print(ctr)
ctr += 1
features_train, features_test = features[train_index], features[test_index]
y_train, y_test = y[train_index], y[test_index]
model = MLPClassifier(hidden_layer_sizes=(150,100,50),
max_iter = 300,activation = 'relu',
solver = 'adam')
model.fit(features_train, y_train)
y_pred = model.predict(features_test)
if predictions.size: # problem here
predictions = np.hstack((predictions,y_pred))
else:
predictions = y_pred
print("first iteration")
end = time.time()
print(end - start)
print("results for neural networks")
print("Accuracy:", metrics.accuracy_score(y, predictions))
print("Precision:", metrics.precision_score(y, predictions))
print("Recall:", metrics.recall_score(y, predictions))
print("F1:", metrics.f1_score(y, predictions))
start = time.time()
loo = LeaveOneOut()
predictions = np.array([])
ctr = 1
for train_index, test_index in loo.split(features):
print(ctr)
ctr += 1
features_train, features_test = features[train_index], features[test_index]
y_train, y_test = y[train_index], y[test_index]
model = XGBClassifier()
model.fit(features_train, y_train)
y_pred = model.predict(features_test)
if predictions.size: # problem here
predictions = np.hstack((predictions,y_pred))
else:
predictions = y_pred
print("first iteration")
end = time.time()
print(end - start)
print("results for xgboost")
print("Accuracy:", metrics.accuracy_score(y, predictions))
print("Precision:", metrics.precision_score(y, predictions))
print("Recall:", metrics.recall_score(y, predictions))
print("F1:", metrics.f1_score(y, predictions))