forked from flatironinstitute/DeepFRI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
viz_gradCAM.py
192 lines (157 loc) · 7.87 KB
/
viz_gradCAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/local/bin/python3
import argparse
import numpy as np
import seaborn as sns
import sys
import json
import matplotlib.pyplot as plt
plt.switch_backend('agg')
# draw class activation map
def draw_cam(window, cam, pdb_chain, goterm, sequence):
# Prepare the final display
seq = [s for s in sequence]
x = np.arange(len(seq))
y = cam
# draw the class activation map
buf = '%s: Function = %s' % (pdb_chain, goterm)
fig, axes = plt.subplots(nrows=2, ncols=1)
axes[0].plot(x, y, color='gray', label='gradCAM')
axes[0].set_title(buf, fontsize=16)
axes[0].set_ylabel('Activation', fontsize=16)
axes[0].set_xlim((0, len(seq)))
axes[0].legend(fontsize=16)
axes[1] = sns.heatmap(cam.reshape(1, cam.shape[0]), cmap='bwr', alpha=0.8, cbar=False)
axes[1].set_xlabel("Residues", fontsize=16)
axes[1].set_xlim((0, len(seq)))
axes[1].set_yticks([])
axes[1].set_xticks([])
plt.axis('tight')
plt.savefig("saliency_fig_" + pdb_chain + "_" + goterm.replace(':', '.') + ".png")
# average over window, window has to be odd
def window_avg(values, window_size):
# check for odd window
if window_size % 2 == 0:
sys.error("window length has to be odd number")
half = int((window_size-1)/2)
# values are a list of floats
lengthened = values.copy()
# add half a window to beginning with value of the first element
for i in range(0, half):
lengthened.insert(0, values[0])
# add half a window to beginning with value of the last element
for i in range(0, half):
lengthened.append(values[-1])
avg = []
# sum values over list, creating a new list
for i in range(0, len(values)):
this_sum = 0
for j in range(0, window_size):
this_sum += lengthened[i+j]
avg.append(this_sum / window_size)
return avg
# =============================================================
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--saliency_fn', '-i', type=str, required=True, help='JSON file with saliency maps.')
parser.add_argument('--list_all', '-l', action='store_true', help="List all protein IDs and their predicted functions.")
parser.add_argument('--protein_id', '-p', type=str, default=None, help='Protein ID to be visualized.')
parser.add_argument('--go_id', '-go', type=str, default=None, help='Example GO term, protein chains of which are to be visualized.')
parser.add_argument('--go_name', type=str, default=None, help='Example GO term keyword, protein IDs of which are to be visualized.')
parser.add_argument('--window', '-w', type=int, default=3, help='Sliding window length. Default 3.')
args = parser.parse_args()
pred = json.load(open(args.saliency_fn, 'r'))
# if listing all
if args.list_all:
for chain in pred:
for i in range(0, len(pred[chain]['GO_ids'])):
print (chain, pred[chain]['GO_ids'][i], pred[chain]['GO_names'][i])
else:
chain_id = args.protein_id
go_id = args.go_id
go_name = args.go_name
window = args.window
lchains = []
lgoterm = []
lgoname = []
lseq = []
lcam = []
# sort all into lists
for chain in pred:
for gt in range(0, len(pred[chain]['GO_ids'])):
goterm = pred[chain]['GO_ids'][gt]
goname = str(pred[chain]['GO_names'][gt])
seq = pred[chain]['sequence']
cam = pred[chain]['saliency_maps'][gt]
if (chain_id is not None and chain == chain_id) and (go_id is not None and go_id == goterm):
lchains.append(chain)
lgoterm.append(goterm)
lgoname.append(goname)
lseq.append(seq)
lcam.append(cam)
if (chain_id is not None and chain == chain_id) and (go_name is not None and goname.find(go_name) != -1):
lchains.append(chain)
lgoterm.append(goterm)
lgoname.append(goname)
lseq.append(seq)
lcam.append(cam)
if (chain_id is not None and chain == chain_id) and (go_name is None) and (go_id is None):
lchains.append(chain)
lgoterm.append(goterm)
lgoname.append(goname)
lseq.append(seq)
lcam.append(cam)
if (go_id is not None and go_id == goterm) and (chain_id is None) and (go_name is None):
lchains.append(chain)
lgoterm.append(goterm)
lgoname.append(goname)
lseq.append(seq)
lcam.append(cam)
if (go_name is not None and goname.find(go_name) != -1) and (chain_id is None) and (go_id is None):
lchains.append(chain)
lgoterm.append(goterm)
lgoname.append(goname)
lseq.append(seq)
lcam.append(cam)
if args.protein_id is not None and chain_id not in lchains:
raise ValueError("Protein ID not in the list.")
if args.go_id is not None and go_id not in lgoterm:
raise ValueError("GO ID not in the list.")
# go through the picked ones
c = 0
# os.system( "rm pymol_viz.py" )
with open('pymol_viz.py', 'w') as f:
f.write("#!/usr/bin/env python\n")
f.write("import time\n")
f.write("import pymol\n\n")
f.write("pymol.cmd.bg_color( \'white\' )\n")
f.write("pymol.cmd.viewport( \'2000\', \'2000\' )\n")
f.write("pymol.cmd.set( \'sphere_scale\', \'0.5\' )\n")
for c in range(0, len(lchains)):
cam_values = lcam[c]
new_cam = window_avg(cam_values, window)
draw_cam(window, np.array(new_cam), lchains[c], lgoterm[c], lseq[c])
# write script to run in pymol
f.write("pymol.cmd.fetch( \'" + lchains[c] + "\' )\n")
f.write("time.sleep( 1 )\n")
f.write("pymol.cmd.show( \'cartoon\' )\n")
f.write("pymol.cmd.set( \'sphere_scale\', \'1\' )\n")
# alter b-factor columns with custom coloring
cam_string = str(", ".join(map(str, new_cam)))
f.write("pymol.cmd.alter(\'" + lchains[c] + "\', \'b=0.0\' )\n")
f.write("stored.cam = [" + cam_string + "]\n")
f.write("pymol.cmd.alter( \'" + lchains[c] + " and n. CA\', \'b=stored.cam.pop(0)\' )\n")
# a bunch of nice color schemes
# f.write( "pymol.cmd.spectrum(\'b\', \'slate_yellow_red\', \'" + lchains[c] + " and n. CA\' )\n")
# f.write( "pymol.cmd.spectrum(\'b\', \'silver_yellow_red\', \'" + lchains[c] + " and n. CA\' )\n")
# f.write( "pymol.cmd.spectrum(\'b\', \'palecyan_silver_magenta\', \'" + lchains[c] + " and n. CA\' )\n")
# f.write( "pymol.cmd.spectrum(\'b\', \'aquamarine_silver_red\', \'" + lchains[c] + " and n. CA\' )\n")
# f.write( "pymol.cmd.spectrum(\'b\', \'lightblue_silver_red\', \'" + lchains[c] + " and n. CA\' )\n")
f.write("pymol.cmd.spectrum( \'b\', \'blue_white_red\', \'" + lchains[c] + " and n. CA\' )\n")
# ligands, water, etc
f.write("pymol.cmd.select( \'ligs_" + lchains[c] + "\', \'" + lchains[c] + " and het\' )\n")
f.write("pymol.cmd.select( \'water\', \'resn hoh\' )\n")
f.write("pymol.cmd.remove( \'water\' )\n")
f.write("pymol.cmd.show( \'sphere\', \'ligs_" + lchains[c] + "\' )\n")
f.write("pymol.cmd.color( \'yellow\', \'ligs_" + lchains[c] + "\' )\n")
f.write("\n")
f.close()