-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory_test.py
69 lines (55 loc) · 2.02 KB
/
memory_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import time
import torch
import torch.nn as nn
import torch.optim as optim
from resnet import *
from swish import *
def replace_relu_with_swish(model, swish_func_str=None):
if swish_func_str == "v1":
swish_act = SwishActivation(swish_v1)
elif swish_func_str == "v2":
swish_act = SwishActivation(swish_v2)
else:
swish_act = SwishActivation(swish_naive)
return convert_recursive(model, swish_act)
# def convert_recursive(module, swish_act):
# mod = module
# if isinstance(module, torch.nn.modules.activation.ReLU):
# mod = swish_act
# else:
# for name, child in module.named_children():
# mod.add_module(name, convert_recursive(child, swish_act))
# del module
# return mod
def convert_recursive(module, swish_act):
if isinstance(module, torch.nn.modules.activation.ReLU):
module = swish_act
else:
for name, child in module.named_children():
module.add_module(name, convert_recursive(child, swish_act))
return module
def train_loop(model, optimizer, criterion):
random_data = torch.rand((32, 3, 224, 224)).cuda()
random_label = torch.randint(1000, (32, ), dtype=torch.int64).cuda()
print("start training now...please check GPU memory with nvidia-smi")
print("Stop the program by Ctrl-C")
for step in range(1000000):
torch.cuda.synchronize()
start = time.time()
optimizer.zero_grad()
output = model(random_data)
loss = criterion(output, random_label)
loss.backward()
optimizer.step()
torch.cuda.synchronize()
end = time.time()
if step % 20 == 0 and step > 0:
print("forward and backward time: ", end - start)
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
model = resnet50()
model = replace_relu_with_swish(model, "v2").cuda()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss().cuda()
train_loop(model, optimizer, criterion)