-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrod_obs_P2Dcd1_T.m
156 lines (123 loc) · 4.06 KB
/
rod_obs_P2Dcd1_T.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
%% Observers for multi-model observer simulations
%
addpath("../process-observers")
%% Process and disturbance models
% This script defines the following models
% - Gd : Process transfer function Gd(z)
% - HDd : Input disturbance transfer function (RODD)
% - Gpd : combined system transfer function (1 input, 1 output)
% - Gpss : state space model of combined system
% Sample time (hrs)
Ts = 3/60;
% Continuous time process model from system identification
% with true outputs - P2Dcd1_T
% Process model with transfer function:
% Kp
% G(s) = ----------------- * exp(-Td*s)
% (1+Tp1*s)(1+Tp2*s)
%
% Kp = -35.935 +/- 0.11198
% Tp1 = 0.23503 +/- 0.017791
% Tp2 = 0.16076 +/- 0.01594
% Td = 0.05
s = tf('s');
Gc = -35.94 * exp(-0.05 * s) / ((1 + 0.2350*s) * (1 + 0.1608*s));
Gc.TimeUnit = 'hours';
Gd = c2d(Gc, Ts, 'ZOH');
Gdss = ss(absorbDelay(Gd));
% RODD step disturbance process
ThetaD = 1;
PhiD = 1;
d = 1;
HDd = rodd_tf(ThetaD, PhiD, d, Ts);
HDd.TimeUnit = 'hours';
% Combined system transfer functions
Gpd = series(Gd, HDd);
% State space representation
Gpss2 = minreal(absorbDelay(ss(Gpd)));
% Discrete time state space model (P1D_c4)
A = [ 2.5411 -1.0667 0.5923 1
2 0 0 0
0 0.5 0 0
0 0 0 0];
B = [ 0;
0;
0;
1];
C = [ 0 -0.50028 -0.84026 0];
D = 0;
Gpss = ss(A, B, C, D, Ts, 'TimeUnit', 'hours');
% Dimensions
n = size(A, 1);
ny = size(C, 1);
% Check all versions are almost identical
wp = zeros(15, 1);
wp([2 6]) = [1 -1];
t_test_sim = Ts*(0:14)';
y1 = lsim(Gpd, wp, t_test_sim);
y2 = lsim(Gpss, wp, t_test_sim);
y3 = lsim(Gpss2, wp, t_test_sim);
assert(max(abs(y1 - y2)) < 0.01)
assert(max(abs(y1 - y3)) < 0.01)
% Designate which input and output variables are
% measured
u_meas = false;
y_meas = true;
% Default initial condition
x0 = zeros(n, 1);
%% Parameters for random inputs to simulations
% RODD random variable parameters
epsilon = 0.01;
sigma_wp = [0.002717 0.2717]; % [0.01 1] .* step magnitude
% Process noise standard deviation
sigma_W = [0; 0];
% Measurement noise standard deviation
sigma_M = 5;
% To check observer with no noise disturbances
%sigma_W = [0; 0];
%sigma_M = 0.001;
% Initial state of disturbance process
p0 = 0;
%% Define observers
% Observer model (without disturbance noise input)
Bu = B(:, u_meas);
Du = D(:, u_meas);
nu = sum(u_meas);
% Disturbance input (used by SKF observer)
Bw = B(:, ~u_meas);
nw = sum(~u_meas);
% Check observability of system
Qobs = obsv(A, C);
unobs = length(A) - rank(Qobs);
assert(unobs == 0);
% Common parameters for all observers
P0 = diag([0.1*ones(1, n-1) 0.01]); % initial error covariance
R = sigma_M^2;
% process noises for state x1
q00 = 0.01^2;
% Kalman filter 1 - tuned to sigma_wp(1)
% Covariance matrix
Q = diag([q00*ones(1, n-1) sigma_wp(1)^2]);
KF1 = kalman_filter(A,Bu,C,Du,Ts,P0,Q,R,'KF1');
% Kalman filter 2 - manually tuned
% Covariance matrix
Q = diag([q00*ones(1, n-1) 0.027^2]);
KF2 = kalman_filter(A,Bu,C,Du,Ts,P0,Q,R,'KF2');
% Kalman filter 3 - tuned to sigma_wp(2)
% Covariance matrix
Q = diag([q00*ones(1, n-1) sigma_wp(2)^2]);
KF3 = kalman_filter(A,Bu,C,Du,Ts,P0,Q,R,'KF3');
% Scheduled Kalman filter
% Use this to test performence of multi-model filters
Q0 = diag([q00*ones(1, n-1) 0]);
SKF = kalman_filter(A,Bu,C,Du,Ts,P0,Q0,R,'SKF');
SKF.Q0 = Q0;
SKF.Bw = Bw;
SKF.sigma_wp = sigma_wp;
% Multiple model Kalman filter
Q0 = diag([q00*ones(1, n-1) 0]);
f = 100; % sequence history length
n_filt = 20; % number of filters
n_min = 18; % minimum life of cloned filters
MMKF = mkf_observer_AFMM(A,B,C,D,Ts,u_meas,P0,epsilon,sigma_wp, ...
Q0,R,n_filt,f,n_min,'MMKF');