forked from anonymous-15816/ART
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
356 lines (290 loc) · 18.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import argparse
from models.model_resnet import *
from models.model_resnet18 import *
import myData.iDataset
import myData.iDataLoader
from utils import *
from sklearn.utils import shuffle
import trainer.trainer_warehouse
import trainer.evaluator
from arguments import *
from myData.data_warehouse import *
from models.W_resnet import *
import torch.optim as optim
args = get_args()
#seed
seed = args.seed
set_seed(seed)
#set gpu
GPU_NUM = 0 # 원하는 GPU 번호 입력
device = torch.device(f'cuda:{GPU_NUM}' if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(device)
print("current cuda : ", torch.cuda.current_device())
if device.type == 'cuda':
print(torch.cuda.get_device_name(GPU_NUM))
print('Memory Usage:')
print('Allocated:', round(torch.cuda.memory_allocated(GPU_NUM) / 1024 ** 3, 1), 'GB')
print('Cached: ', round(torch.cuda.memory_cached(GPU_NUM) / 1024 ** 3, 1), 'GB')
data = DatasetWH
dataset = data.get_dataset(args.dataset)
#shuffle_idx = shuffle(np.arange(dataset.classes), random_state=seed)
shuffle_idx = None
tasknum = (dataset.classes - args.start_classes) // args.step_size + 1
#######################################################################dataset, dataloader, model decalare
if args.dataset == 'CIFAR100' or args.dataset == 'CIFAR10':
loader = None
myNet = resnet32(num_classes=dataset.classes, tasknum=tasknum).cuda()
else:
loader = dataset.loader
myNet = wideresnet(depth=16, num_classes=200, widen_factor=2, dropRate=0.3).cuda()
train_dataset_loader = myData.iDataLoader.IncrementalLoader(dataset.train_data,
dataset.train_labels,
dataset.classes,
args.step_size,
args.memory_size,
'train',
transform=dataset.train_transform,
loader=loader,
shuffle_idx=shuffle_idx,
base_classes=args.start_classes,
approach= args.trainer,
)
evaluate_dataset_loader = myData.iDataLoader.IncrementalLoader(dataset.train_data,
dataset.train_labels,
dataset.classes,
args.step_size,
args.memory_size,
'train',
transform=dataset.train_transform,
loader=loader,
shuffle_idx=shuffle_idx,
base_classes=args.start_classes,
approach= "ft",
)
test_dataset_loader = myData.iDataLoader.IncrementalLoader(dataset.test_data,
dataset.test_labels,
dataset.classes,
args.step_size,
args.memory_size,
'test',
transform=dataset.test_transform,
loader=loader,
shuffle_idx=shuffle_idx,
base_classes=args.start_classes,
approach= args.trainer,
)
result_dataset_loaders = myData.iDataLoader.make_ResultLoaders(dataset.test_data,
dataset.test_labels,
dataset.classes,
args.step_size,
transform=dataset.test_transform,
loader=loader,
shuffle_idx = shuffle_idx,
base_classes = args.start_classes
)
#only for the BiC
bias_dataset_loader = myData.iDataLoader.IncrementalLoader(dataset.train_data,
dataset.train_labels,
dataset.classes,
args.step_size,
args.memory_size,
'bias',
transform=dataset.train_transform,
loader=loader,
shuffle_idx=shuffle_idx,
base_classes=args.start_classes,
approach=args.trainer
)
train_iterator = torch.utils.data.DataLoader(train_dataset_loader, batch_size=args.batch_size, shuffle=True,
drop_last=True)
evaluator_iterator = torch.utils.data.DataLoader(evaluate_dataset_loader, batch_size=args.batch_size, shuffle=True)
test_iterator = torch.utils.data.DataLoader(test_dataset_loader, batch_size=50, shuffle=False)
#######################################################################################################################
####################################################################################Set optimizer, trainer, evaluator
optimizer = optim.SGD(myNet.parameters(), args.lr, momentum=0.9,
weight_decay=5e-4, nesterov=True)
if args.trainer == "icarl" :
test_type = "generativeClassifier"
else :
testType = "trainedClassifier"
myTrainer = trainer.trainer_warehouse.TrainerFactory.get_trainer(train_iterator, test_iterator, dataset, myNet, args, optimizer)
myEvaluator = trainer.evaluator.EvaluatorFactory.get_evaluator(testType, classes=dataset.classes)
bic_Evaluator = trainer.evaluator.EvaluatorFactory.get_evaluator("bic", classes=dataset.classes)
#######################################################################################################################
####################################################################################etc informaation
train_start = 0
train_end = args.start_classes
test_start = 0
test_end = args.start_classes
total_epochs = args.nepochs
schedule = np.array(args.schedule)
results = {}
for head in ['all', 'prev_new', 'task', 'cheat']:
results[head] = {}
results[head]['correct'] = []
results[head]['correct_5'] = []
results[head]['stat'] = []
results['task_soft_1'] = np.zeros((tasknum, tasknum))
results['task_soft_5'] = np.zeros((tasknum, tasknum))
correct_list = []
stat_list = []
task_confidence_list = []
get_confidence = False
task_error = []
#################Get Into Incremental Learning!###############################
print("datset : ", args.dataset, "| trainer : ", args.trainer, "| kdloss : ", args.KD, " | triplet : ", args.triplet)
for t in range(tasknum):
get_confidence = False
correct = {} # record for correct
stat = {} # record for statistics e.g. ep, enn ..
lr = args.lr
myTrainer.update_frozen_model()
myTrainer.setup_training(lr)
if t > 0 and args.triplet: #make class correlation matrix
if args.dict_type == "softmax":
myTrainer.make_class_dict()
print("SEED:", args.seed, "MEMORY_BUDGET:", args.memory_size, "tasknum:", t)
for epoch in range(args.nepochs):
myTrainer.update_lr(epoch, args.schedule)
myTrainer.train(epoch, triplet=args.triplet)
if epoch % 5 == 4:
if args.trainer == "icarl":
myEvaluator.update_moment(myTrainer.model, evaluator_iterator, args.step_size, t)
if t == 0:
get_confidence = False
train_1 = myEvaluator.evaluate(myTrainer.model, evaluator_iterator, 0, train_end,
get_confidence=get_confidence, tasknum=tasknum)
test_1 = myEvaluator.evaluate(myTrainer.model, test_iterator, test_start, test_end,
mode='test', step_size=args.step_size, tasknum=tasknum)
print("*********CURRENT EPOCH********** : %d" % epoch)
print("Train Classifier top-1 (Softmax): %0.2f" % train_1)
print("Test Classifier top-1 (Softmax): ", test_1)
else:
if epoch == args.nepochs - 1 & get_confidence == True:
get_confidence = False
train_1, confidence = myEvaluator.evaluate(myTrainer.model, evaluator_iterator, 0, train_end,
get_confidence=get_confidence, tasknum=tasknum)
else:
train_1 = myEvaluator.evaluate(myTrainer.model, evaluator_iterator, 0, train_end,
get_confidence=get_confidence, tasknum=tasknum)
correct, stat = myEvaluator.evaluate(myTrainer.model, test_iterator,
test_start, test_end,
mode='test', step_size=args.step_size, tasknum=tasknum)
print("Train Classifier top-1 (Softmax): %0.2f" % train_1)
print("Test Classifier top-1 (Softmax, all): %0.2f" % correct['all'])
print("Test Classifier top-1 (Softmax, pre): %0.2f" % correct['pre'])
print("Test Classifier top-1 (Softmax, new): %0.2f" % correct['new'])
print("Test Classifier top-1 (Softmax, intra_pre): %0.2f" % correct['intra_pre'])
print("Test Classifier top-1 (Softmax, intra_new): %0.2f" % correct['intra_new'])
if (epoch == args.anchor_update_epoch - 1) and t > 0 and args.triplet == True :
myTrainer.make_class_Anchor(after_train=False) # save class anchor for next step
if args.dict_update == True:
if args.dict_type == "softmax":
myTrainer.make_class_dict()
else:
myTrainer.make_class_dict_CS()
if t > 0 and (args.trainer == 'wa' or args.trainer == "CLT"): #weight align for bias correction
myTrainer.weight_align(new_wa=args.new_WA)
correct, stat = myEvaluator.evaluate(myTrainer.model, test_iterator,
test_start, test_end,
mode='test', step_size=args.step_size, tasknum=tasknum)
print("Test Classifier top-1 (Softmax, all): %0.2f" % correct['all'])
print("Test Classifier top-1 (Softmax, pre): %0.2f" % correct['pre'])
print("Test Classifier top-1 (Softmax, new): %0.2f" % correct['new'])
print("Test Classifier top-1 (Softmax, intra_pre): %0.2f" % correct['intra_pre'])
print("Test Classifier top-1 (Softmax, intra_new): %0.2f" % correct['intra_new'])
if t > 0 and (args.trainer == 'eeil'): #balanced finutning fot EEIL
myTrainer.balance_fine_tune()
correct, stat = myEvaluator.evaluate(myTrainer.model, test_iterator,
test_start, test_end,
mode='test', step_size=args.step_size, tasknum=tasknum)
print("Test Classifier top-1 (Softmax, all): %0.2f" % correct['all'])
print("Test Classifier top-1 (Softmax, pre): %0.2f" % correct['pre'])
print("Test Classifier top-1 (Softmax, new): %0.2f" % correct['new'])
print("Test Classifier top-1 (Softmax, intra_pre): %0.2f" % correct['intra_pre'])
print("Test Classifier top-1 (Softmax, intra_new): %0.2f" % correct['intra_new'])
print("Test Classifier top-1 (Softmax, ti_correct): %0.2f" % correct['task_id_correct'])
if args.trainer == 'bic' and t > 0:
best_acc = 0
bias_iterator = myData.iDataLoader.iterator(bias_dataset_loader, batch_size=args.batch_size, shuffle=True)
print(myTrainer.bias_correction_layer.alpha)
print(myTrainer.bias_correction_layer.beta)
for e in range(args.nepochs * 2):
myTrainer.train_bias_correction(bias_iterator)
myTrainer.update_bias_lr(e, schedule)
if e % 5 == (4):
correct, stat = bic_Evaluator.evaluate(myTrainer.model, test_iterator,
test_start, test_end, myTrainer.bias_correction_layer,
mode='test', step_size=args.step_size)
print("Test Classifier top-1 (Softmax, all): %0.2f" % correct['all'])
print("Test Classifier top-1 (Softmax, pre): %0.2f" % correct['pre'])
print("Test Classifier top-1 (Softmax, new): %0.2f" % correct['new'])
print("Test Classifier top-1 (Softmax, intra_pre): %0.2f" % correct['intra_pre'])
print("Test Classifier top-1 (Softmax, intra_new): %0.2f" % correct['intra_new'])
correct, stat = bic_Evaluator.evaluate(myTrainer.model, test_iterator,
test_start, test_end, myTrainer.bias_correction_layer,
mode='test', step_size=args.step_size)
print("Test Classifier top-1 (Softmax, all): %0.2f" % correct['all'])
print("Test Classifier top-1 (Softmax, pre): %0.2f" % correct['pre'])
print("Test Classifier top-1 (Softmax, new): %0.2f" % correct['new'])
print("Test Classifier top-1 (Softmax, intra_pre): %0.2f" % correct['intra_pre'])
print("Test Classifier top-1 (Softmax, intra_new): %0.2f" % correct['intra_new'])
if args.triplet == True :
if t > 0 :
myTrainer.make_class_Anchor(after_train=False) # save class anchor for next step
else :
myTrainer.make_class_Anchor()
if t > 0:
correct, stat = myEvaluator.evaluate(myTrainer.model, test_iterator,
test_start, test_end,
mode='test', step_size=args.step_size, tasknum=tasknum)
for head in ['all', 'pre', 'new', 'intra_pre', 'intra_new']:
results['all']['correct'].append(correct[head])
results['all']['stat'].append(stat['all'])
else:
test_1 = myEvaluator.evaluate(myTrainer.model, test_iterator, test_start, test_end,
mode='test', step_size=args.step_size, tasknum=tasknum)
print("Test Classifier top-1 (Softmax): ", test_1)
for head in ['all']:
results[head]['correct'].append(test_1)
start = 0
end = args.start_classes
correct_list.append(correct)
stat_list.append(stat)
if args.triplet == True:
torch.save(myNet.state_dict(),
'./checkpoint/comparasion/' + 'base_{}_{}_tri{}_trilam{}_newWA{}_{}_{}_{}.pt'.format(args.trainer,
args.dataset,
args.triplet,
args.triplet_lam,
args.new_WA,
tasknum, t, args.model))
else:
torch.save(myNet.state_dict(),
'./checkpoint/comparasion/' + '20_base_{}_{}_tri{}_newWA{}_{}_{}_{}.pt'.format(args.trainer, args.dataset,
args.triplet, args.new_WA,
tasknum, t, args.model))
myTrainer.increment_classes(mode="Bal", bal="None", memory_mode=None)
evaluate_dataset_loader.update_exemplar()
evaluate_dataset_loader.task_change()
# for bic
bias_dataset_loader.update_exemplar()
bias_dataset_loader.task_change()
train_end = train_end + args.step_size
test_end = test_end + args.step_size
print(args)
print()
print("print acc")
for i in range(tasknum):
if i == 0:
print(test_1)
else:
print(correct_list[i]["all"])
print()
print("print all")
for i in range(tasknum):
if i == 0:
print(test_1)
else:
print(correct_list[i]["intra_pre"], " ", correct_list[i]["intra_new"], " ", correct_list[i]["pre"], " ",
correct_list[i]["new"], " ", correct_list[i]["task_id_correct"])